IDEAS home Printed from https://ideas.repec.org/a/eee/matcom/v180y2021icp354-378.html
   My bibliography  Save this article

Mathematical analysis of the global dynamics of a HTLV-I infection model, considering the role of cytotoxic T-lymphocytes

Author

Listed:
  • Khajanchi, Subhas
  • Bera, Sovan
  • Roy, Tapan Kumar

Abstract

A mathematical model for the CD8+ T-cell response to Human T cell leukemia/lymphoma virus type I (HTLV-I) infection is investigated in this paper. The proposed model, which involves four coupled nonlinear ordinary differential equations, describes the interaction of uninfected CD4+T cells, latently infected CD4+T cells, actively infected CD4+T cells and HTLV-I specific cytotoxic T-lymphocytes (CTLs). Our model exhibits three biologically feasible equilibria, namely infection-free steady state, HTLV-I free steady state and an endemic steady state. Our mathematical analysis establishes that the local and global dynamics are determined by the two threshold parameters R0 and R1, basic reproduction number for HTLV-I viral infection and for CTL response, respectively. For R0<1, the infection-free steady state E0 is globally asymptotically stable, and HTLV-I viruses are cleared. For R1≤11 in the interior of the feasible region. We perform the sensitivity analysis to find out the key parameters of the HTLV-I infection model with respect to R0 and R1. Implications of our findings to the dynamics of CTL response to HTLV-I infections in vivo and pathogenesis of HTLV-I associated myelopathy/tropical spastic paraparesis (HAM/TSP) are discussed.

Suggested Citation

  • Khajanchi, Subhas & Bera, Sovan & Roy, Tapan Kumar, 2021. "Mathematical analysis of the global dynamics of a HTLV-I infection model, considering the role of cytotoxic T-lymphocytes," Mathematics and Computers in Simulation (MATCOM), Elsevier, vol. 180(C), pages 354-378.
  • Handle: RePEc:eee:matcom:v:180:y:2021:i:c:p:354-378
    DOI: 10.1016/j.matcom.2020.09.009
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S0378475420303177
    Download Restriction: Full text for ScienceDirect subscribers only

    File URL: https://libkey.io/10.1016/j.matcom.2020.09.009?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Khajanchi, Subhas & Das, Dhiraj Kumar & Kar, Tapan Kumar, 2018. "Dynamics of tuberculosis transmission with exogenous reinfections and endogenous reactivation," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 497(C), pages 52-71.
    2. Khajanchi, Subhas, 2015. "Bifurcation analysis of a delayed mathematical model for tumor growth," Chaos, Solitons & Fractals, Elsevier, vol. 77(C), pages 264-276.
    3. Das, Dhiraj Kumar & Khajanchi, Subhas & Kar, T.K., 2020. "The impact of the media awareness and optimal strategy on the prevalence of tuberculosis," Applied Mathematics and Computation, Elsevier, vol. 366(C).
    4. Khajanchi, Subhas, 2018. "Modeling the dynamics of glioma-immune surveillance," Chaos, Solitons & Fractals, Elsevier, vol. 114(C), pages 108-118.
    5. Sarkar, Kankan & Khajanchi, Subhas & Nieto, Juan J., 2020. "Modeling and forecasting the COVID-19 pandemic in India," Chaos, Solitons & Fractals, Elsevier, vol. 139(C).
    6. Das, Dhiraj Kumar & Khajanchi, Subhas & Kar, T.K., 2020. "Transmission dynamics of tuberculosis with multiple re-infections," Chaos, Solitons & Fractals, Elsevier, vol. 130(C).
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Gharahasanlou, Tohid Kasbi & Roomi, Vahid & Hemmatzadeh, Zeynab, 2022. "Global stability analysis of viral infection model with logistic growth rate, general incidence function and cellular immunity," Mathematics and Computers in Simulation (MATCOM), Elsevier, vol. 194(C), pages 64-79.
    2. Ahmed M. Elaiw & Abdulsalam S. Shflot & Aatef D. Hobiny & Shaban A. Aly, 2023. "Global Dynamics of an HTLV-I and SARS-CoV-2 Co-Infection Model with Diffusion," Mathematics, MDPI, vol. 11(3), pages 1-33, January.
    3. Bandekar, Shraddha Ramdas & Ghosh, Mini, 2022. "A co-infection model on TB - COVID-19 with optimal control and sensitivity analysis," Mathematics and Computers in Simulation (MATCOM), Elsevier, vol. 200(C), pages 1-31.
    4. Ahmed M. Elaiw & Abdulsalam S. Shflot & Aatef D. Hobiny, 2022. "Global Stability of Delayed SARS-CoV-2 and HTLV-I Coinfection Models within a Host," Mathematics, MDPI, vol. 10(24), pages 1-35, December.
    5. Bera, Sovan & Khajanchi, Subhas & Roy, Tapan Kumar, 2022. "Dynamics of an HTLV-I infection model with delayed CTLs immune response," Applied Mathematics and Computation, Elsevier, vol. 430(C).
    6. Zhang, Zhenzhen & Ma, Xia & Zhang, Yongxin & Sun, Guiquan & Zhang, Zi-Ke, 2023. "Identifying critical driving factors for human brucellosis in Inner Mongolia, China," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 626(C).
    7. Asamoah, Joshua Kiddy K. & Okyere, Eric & Yankson, Ernest & Opoku, Alex Akwasi & Adom-Konadu, Agnes & Acheampong, Edward & Arthur, Yarhands Dissou, 2022. "Non-fractional and fractional mathematical analysis and simulations for Q fever," Chaos, Solitons & Fractals, Elsevier, vol. 156(C).
    8. Tu, Yunbo & Meng, Xinzhu, 2023. "A reaction–diffusion epidemic model with virus mutation and media coverage: Theoretical analysis and numerical simulation," Mathematics and Computers in Simulation (MATCOM), Elsevier, vol. 214(C), pages 28-67.
    9. Han, Lili & Song, Sha & Pan, Qiuhui & He, Mingfeng, 2023. "The impact of multiple population-wide testing and social distancing on the transmission of an infectious disease," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 630(C).

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Bera, Sovan & Khajanchi, Subhas & Roy, Tapan Kumar, 2022. "Dynamics of an HTLV-I infection model with delayed CTLs immune response," Applied Mathematics and Computation, Elsevier, vol. 430(C).
    2. Asamoah, Joshua Kiddy K. & Okyere, Eric & Yankson, Ernest & Opoku, Alex Akwasi & Adom-Konadu, Agnes & Acheampong, Edward & Arthur, Yarhands Dissou, 2022. "Non-fractional and fractional mathematical analysis and simulations for Q fever," Chaos, Solitons & Fractals, Elsevier, vol. 156(C).
    3. Das, Dhiraj Kumar & Kar, T.K., 2021. "Global dynamics of a tuberculosis model with sensitivity of the smear microscopy," Chaos, Solitons & Fractals, Elsevier, vol. 146(C).
    4. Bandekar, Shraddha Ramdas & Ghosh, Mini, 2022. "A co-infection model on TB - COVID-19 with optimal control and sensitivity analysis," Mathematics and Computers in Simulation (MATCOM), Elsevier, vol. 200(C), pages 1-31.
    5. Khajanchi, Subhas, 2021. "The impact of immunotherapy on a glioma immune interaction model," Chaos, Solitons & Fractals, Elsevier, vol. 152(C).
    6. Sardar, Mrinmoy & Biswas, Santosh & Khajanchi, Subhas, 2021. "The impact of distributed time delay in a tumor-immune interaction system," Chaos, Solitons & Fractals, Elsevier, vol. 142(C).
    7. Khajanchi, Subhas & Nieto, Juan J., 2019. "Mathematical modeling of tumor-immune competitive system, considering the role of time delay," Applied Mathematics and Computation, Elsevier, vol. 340(C), pages 180-205.
    8. Li, Qian & Xiao, Yanni, 2019. "Bifurcation analyses and hormetic effects of a discrete-time tumor model," Applied Mathematics and Computation, Elsevier, vol. 363(C), pages 1-1.
    9. Das, Dhiraj Kumar & Khajanchi, Subhas & Kar, T.K., 2020. "The impact of the media awareness and optimal strategy on the prevalence of tuberculosis," Applied Mathematics and Computation, Elsevier, vol. 366(C).
    10. Sarkar, Kankan & Khajanchi, Subhas & Nieto, Juan J., 2020. "Modeling and forecasting the COVID-19 pandemic in India," Chaos, Solitons & Fractals, Elsevier, vol. 139(C).
    11. Liu, Xiangdong & Li, Qingze & Pan, Jianxin, 2018. "A deterministic and stochastic model for the system dynamics of tumor–immune responses to chemotherapy," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 500(C), pages 162-176.
    12. Hwang, Eunju, 2022. "Prediction intervals of the COVID-19 cases by HAR models with growth rates and vaccination rates in top eight affected countries: Bootstrap improvement," Chaos, Solitons & Fractals, Elsevier, vol. 155(C).
    13. Fu, Xinjie & Wang, JinRong, 2024. "Dynamic behaviors and non-instantaneous impulsive vaccination of an SAIQR model on complex networks," Applied Mathematics and Computation, Elsevier, vol. 465(C).
    14. Mayer Alvo & Jingrui Mu, 2023. "COVID-19 Data Analysis Using Bayesian Models and Nonparametric Geostatistical Models," Mathematics, MDPI, vol. 11(6), pages 1-13, March.
    15. Sharma, Natasha & Verma, Atul Kumar & Gupta, Arvind Kumar, 2021. "Spatial network based model forecasting transmission and control of COVID-19," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 581(C).
    16. Cooper, Ian & Mondal, Argha & Antonopoulos, Chris G., 2020. "Dynamic tracking with model-based forecasting for the spread of the COVID-19 pandemic," Chaos, Solitons & Fractals, Elsevier, vol. 139(C).
    17. Khajanchi, Subhas & Ghosh, Dibakar, 2015. "The combined effects of optimal control in cancer remission," Applied Mathematics and Computation, Elsevier, vol. 271(C), pages 375-388.
    18. Fatima Sulayman & Farah Aini Abdullah & Mohd Hafiz Mohd, 2021. "An SVEIRE Model of Tuberculosis to Assess the Effect of an Imperfect Vaccine and Other Exogenous Factors," Mathematics, MDPI, vol. 9(4), pages 1-23, February.
    19. Chen, Yi & Wang, Lianwen & Zhang, Jinhui, 2024. "Global asymptotic stability of an age-structured tuberculosis model: An analytical method to determine kernel coefficients in Lyapunov functional," Chaos, Solitons & Fractals, Elsevier, vol. 181(C).
    20. Giovanni Dieguez & Cristiane Batistela & José R. C. Piqueira, 2023. "Controlling COVID-19 Spreading: A Three-Level Algorithm," Mathematics, MDPI, vol. 11(17), pages 1-39, September.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:matcom:v:180:y:2021:i:c:p:354-378. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.journals.elsevier.com/mathematics-and-computers-in-simulation/ .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.