IDEAS home Printed from https://ideas.repec.org/a/eee/chsofr/v148y2021ics0960077921003921.html
   My bibliography  Save this article

A tristable locally-active memristor and its complex dynamics

Author

Listed:
  • Ying, Jiajie
  • Liang, Yan
  • Wang, Junlan
  • Dong, Yujiao
  • Wang, Guangyi
  • Gu, Meiyuan

Abstract

It has been well recognized that local activity is the origin of complex dynamics. Many important commercial applications would benefit from the locally-active memristors. To explore the locally active characteristics of memristors, a new tristable voltage-controlled locally-active memristor model is proposed based on Chua's unfolding theorem, which has three asymptotically equilibrium points and three locally-active regions. Non-volatility and the local activity of the memristor are demonstrated by POP (Power-Off Plot) and DC V-I plot. A small-signal equivalent circuit is established on a locally active operating point of the memristor to describe the characteristic of the memristor at the locally active region. Based on the admittance function Y(iω,V) of the small-signal equivalent circuit, the parasitic capacitor and the oscillation frequency of the are determined. The parasitic oscillation circuit consisting of the memristor, a parasitic resistor and a parasitic capacitor is analyzed in detail by Hopf bifurcation theory and the pole diagram of the composite admittance function YP (s, Q) of the parasitic oscillation circuit. Furthermore, by adding an inductor to the periodic parasitic circuit, we derive a simple chaotic circuit whose basic properties and coexisting dynamics are analyzed in detail. We concluded that the locally-active memristor provides the energy for the circuit to excite and maintain the periodic and chaotic oscillations.

Suggested Citation

  • Ying, Jiajie & Liang, Yan & Wang, Junlan & Dong, Yujiao & Wang, Guangyi & Gu, Meiyuan, 2021. "A tristable locally-active memristor and its complex dynamics," Chaos, Solitons & Fractals, Elsevier, vol. 148(C).
  • Handle: RePEc:eee:chsofr:v:148:y:2021:i:c:s0960077921003921
    DOI: 10.1016/j.chaos.2021.111038
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S0960077921003921
    Download Restriction: Full text for ScienceDirect subscribers only

    File URL: https://libkey.io/10.1016/j.chaos.2021.111038?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Suhas Kumar & John Paul Strachan & R. Stanley Williams, 2017. "Chaotic dynamics in nanoscale NbO2 Mott memristors for analogue computing," Nature, Nature, vol. 548(7667), pages 318-321, August.
    2. Zubaer I. Mannan & Changju Yang & Shyam P. Adhikari & Hyongsuk Kim, 2018. "Exact Analysis and Physical Realization of the 6-Lobe Chua Corsage Memristor," Complexity, Hindawi, vol. 2018, pages 1-21, November.
    3. Dmitri B. Strukov & Gregory S. Snider & Duncan R. Stewart & R. Stanley Williams, 2008. "The missing memristor found," Nature, Nature, vol. 453(7191), pages 80-83, May.
    4. Al-Hussein, Abdul-Basset A. & Rahma, Fadihl & Jafari, Sajad, 2020. "Hopf bifurcation and chaos in time-delay model of glucose-insulin regulatory system," Chaos, Solitons & Fractals, Elsevier, vol. 137(C).
    5. Jonathan M. Goodwill & Georg Ramer & Dasheng Li & Brian D. Hoskins & Georges Pavlidis & Jabez J. McClelland & Andrea Centrone & James A. Bain & Marek Skowronski, 2019. "Spontaneous current constriction in threshold switching devices," Nature Communications, Nature, vol. 10(1), pages 1-8, December.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Cheng, Guanghui & Gui, Rong, 2022. "Bistable chaotic family and its chaotic mechanism," Chaos, Solitons & Fractals, Elsevier, vol. 162(C).
    2. Ying, Jiajie & Min, Fuhong & Wang, Guangyi, 2023. "Neuromorphic behaviors of VO2 memristor-based neurons," Chaos, Solitons & Fractals, Elsevier, vol. 175(P2).
    3. Li, Zhijun & Chen, Kaijie, 2023. "Neuromorphic behaviors in a neuron circuit based on current-controlled Chua Corsage Memristor," Chaos, Solitons & Fractals, Elsevier, vol. 175(P1).

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Dong, Yujiao & Yang, Shuting & Liang, Yan & Wang, Guangyi, 2022. "Neuromorphic dynamics near the edge of chaos in memristive neurons," Chaos, Solitons & Fractals, Elsevier, vol. 160(C).
    2. Ushakov, Yury & Akther, Amir & Borisov, Pavel & Pattnaik, Debi & Savel’ev, Sergey & Balanov, Alexander G., 2021. "Deterministic mechanisms of spiking in diffusive memristors," Chaos, Solitons & Fractals, Elsevier, vol. 149(C).
    3. Ke Yang & Yanghao Wang & Pek Jun Tiw & Chaoming Wang & Xiaolong Zou & Rui Yuan & Chang Liu & Ge Li & Chen Ge & Si Wu & Teng Zhang & Ru Huang & Yuchao Yang, 2024. "High-order sensory processing nanocircuit based on coupled VO2 oscillators," Nature Communications, Nature, vol. 15(1), pages 1-12, December.
    4. Wojtusiak, A.M. & Balanov, A.G. & Savel’ev, S.E., 2021. "Intermittent and metastable chaos in a memristive artificial neuron with inertia," Chaos, Solitons & Fractals, Elsevier, vol. 142(C).
    5. Sang Hyun Sung & Tae Jin Kim & Hyera Shin & Tae Hong Im & Keon Jae Lee, 2022. "Simultaneous emulation of synaptic and intrinsic plasticity using a memristive synapse," Nature Communications, Nature, vol. 13(1), pages 1-12, December.
    6. Rui Wang & Tuo Shi & Xumeng Zhang & Jinsong Wei & Jian Lu & Jiaxue Zhu & Zuheng Wu & Qi Liu & Ming Liu, 2022. "Implementing in-situ self-organizing maps with memristor crossbar arrays for data mining and optimization," Nature Communications, Nature, vol. 13(1), pages 1-10, December.
    7. Panin, Gennady N., 2021. "Optoelectronic dynamic memristor systems based on two-dimensional crystals," Chaos, Solitons & Fractals, Elsevier, vol. 142(C).
    8. Pietro Belleri & Judith Pons i Tarrés & Iain McCulloch & Paul W. M. Blom & Zsolt M. Kovács-Vajna & Paschalis Gkoupidenis & Fabrizio Torricelli, 2024. "Unravelling the operation of organic artificial neurons for neuromorphic bioelectronics," Nature Communications, Nature, vol. 15(1), pages 1-16, December.
    9. Min, Fuhong & Zhang, Wen & Ji, Ziyi & Zhang, Lei, 2021. "Switching dynamics of a non-autonomous FitzHugh-Nagumo circuit with piecewise-linear flux-controlled memristor," Chaos, Solitons & Fractals, Elsevier, vol. 152(C).
    10. Feng, Liang & Hu, Cheng & Yu, Juan & Jiang, Haijun & Wen, Shiping, 2021. "Fixed-time Synchronization of Coupled Memristive Complex-valued Neural Networks," Chaos, Solitons & Fractals, Elsevier, vol. 148(C).
    11. Hu, Yongbing & Li, Qian & Ding, Dawei & Jiang, Li & Yang, Zongli & Zhang, Hongwei & Zhang, Zhixin, 2021. "Multiple coexisting analysis of a fractional-order coupled memristive system and its application in image encryption," Chaos, Solitons & Fractals, Elsevier, vol. 152(C).
    12. Yan, Dengwei & Wang, Lidan & Duan, Shukai & Chen, Jiaojiao & Chen, Jiahao, 2021. "Chaotic Attractors Generated by a Memristor-Based Chaotic System and Julia Fractal," Chaos, Solitons & Fractals, Elsevier, vol. 146(C).
    13. Luo, Mengzhuo & Cheng, Jun & Liu, Xinzhi & Zhong, Shouming, 2019. "An extended synchronization analysis for memristor-based coupled neural networks via aperiodically intermittent control," Applied Mathematics and Computation, Elsevier, vol. 344, pages 163-182.
    14. Liu, Shuxin & Yu, Yongguang & Zhang, Shuo & Zhang, Yuting, 2018. "Robust stability of fractional-order memristor-based Hopfield neural networks with parameter disturbances," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 509(C), pages 845-854.
    15. Zhang, Ge & Ma, Jun & Alsaedi, Ahmed & Ahmad, Bashir & Alzahrani, Faris, 2018. "Dynamical behavior and application in Josephson Junction coupled by memristor," Applied Mathematics and Computation, Elsevier, vol. 321(C), pages 290-299.
    16. Chen, Qun & Li, Bo & Yin, Wei & Jiang, Xiaowei & Chen, Xiangyong, 2023. "Bifurcation, chaos and fixed-time synchronization of memristor cellular neural networks," Chaos, Solitons & Fractals, Elsevier, vol. 171(C).
    17. Alessandra Milloch & Ignacio Figueruelo-Campanero & Wei-Fan Hsu & Selene Mor & Simon Mellaerts & Francesco Maccherozzi & Larissa S. I. Veiga & Sarnjeet S. Dhesi & Mauro Spera & Jin Won Seo & Jean-Pier, 2024. "Mott resistive switching initiated by topological defects," Nature Communications, Nature, vol. 15(1), pages 1-7, December.
    18. Stavrinides, Stavros G. & Hanias, Michael P. & Gonzalez, Mireia B. & Campabadal, Francesca & Contoyiannis, Yiannis & Potirakis, Stelios M. & Al Chawa, Mohamad Moner & de Benito, Carol & Tetzlaff, Rona, 2022. "On the chaotic nature of random telegraph noise in unipolar RRAM memristor devices," Chaos, Solitons & Fractals, Elsevier, vol. 160(C).
    19. Li, Liangchen & Xu, Rui & Lin, Jiazhe, 2020. "Lagrange stability for uncertain memristive neural networks with Lévy noise and leakage delay," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 549(C).
    20. Rohit Abraham John & Yiğit Demirağ & Yevhen Shynkarenko & Yuliia Berezovska & Natacha Ohannessian & Melika Payvand & Peng Zeng & Maryna I. Bodnarchuk & Frank Krumeich & Gökhan Kara & Ivan Shorubalko &, 2022. "Reconfigurable halide perovskite nanocrystal memristors for neuromorphic computing," Nature Communications, Nature, vol. 13(1), pages 1-10, December.

    More about this item

    Keywords

    Memristor; Local activity; Chaos;
    All these keywords.

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:chsofr:v:148:y:2021:i:c:s0960077921003921. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Thayer, Thomas R. (email available below). General contact details of provider: https://www.journals.elsevier.com/chaos-solitons-and-fractals .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.