IDEAS home Printed from https://ideas.repec.org/a/eee/chsofr/v176y2023ics096007792301055x.html
   My bibliography  Save this article

Pattern dynamics of a harvested predator–prey model

Author

Listed:
  • Chen, Mengxin
  • Ham, Seokjun
  • Choi, Yongho
  • Kim, Hyundong
  • Kim, Junseok

Abstract

This paper investigates the pattern dynamics of a harvested predator–prey model with no-flux boundary conditions. Firstly, we analyze the positive equilibrium types of the local temporal model. We find that they can be classified as nodes, foci, or centers depending on the harvesting coefficient within a certain parameter range. Furthermore, the direction of the Hopf bifurcation is determined by employing the first Lyapunov coefficient. In the subsequent analysis, we present the conditions for the existence of Turing instability and classify the different pattern selections using amplitude equations with the assistance of weakly nonlinear analysis by treating the harvesting coefficient as a critical parameter. Finally, the spot patterns and mixed patterns are respectively displayed in 2D space, on spherical and torus surfaces with various harvesting coefficient values. Especially, we can numerically demonstrate that the diffusion rate of the prey population will strongly affect the pattern structures of the model. These results can provide a reference for understanding the interaction dynamics of the model.

Suggested Citation

  • Chen, Mengxin & Ham, Seokjun & Choi, Yongho & Kim, Hyundong & Kim, Junseok, 2023. "Pattern dynamics of a harvested predator–prey model," Chaos, Solitons & Fractals, Elsevier, vol. 176(C).
  • Handle: RePEc:eee:chsofr:v:176:y:2023:i:c:s096007792301055x
    DOI: 10.1016/j.chaos.2023.114153
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S096007792301055X
    Download Restriction: Full text for ScienceDirect subscribers only

    File URL: https://libkey.io/10.1016/j.chaos.2023.114153?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Li, Yanqiu & Zhou, Yibo, 2023. "Turing–Hopf bifurcation in a general Selkov–Schnakenberg reaction–diffusion system," Chaos, Solitons & Fractals, Elsevier, vol. 171(C).
    2. Chen, Mengxin & Wu, Ranchao & Liu, Hongxia & Fu, Xiaoxue, 2021. "Spatiotemporal complexity in a Leslie-Gower type predator-prey model near Turing-Hopf point," Chaos, Solitons & Fractals, Elsevier, vol. 153(P1).
    3. Shi, Hong-Bo & Li, Yan, 2015. "Global asymptotic stability of a diffusive predator–prey model with ratio-dependent functional response," Applied Mathematics and Computation, Elsevier, vol. 250(C), pages 71-77.
    4. Chen, Mengxin & Srivastava, Hari Mohan, 2023. "Stability of bifurcating solution of a predator–prey model," Chaos, Solitons & Fractals, Elsevier, vol. 168(C).
    5. Chen, Mengxin & Wu, Ranchao & Chen, Liping, 2020. "Spatiotemporal patterns induced by Turing and Turing-Hopf bifurcations in a predator-prey system," Applied Mathematics and Computation, Elsevier, vol. 380(C).
    6. Wang, Yong & Zhou, Xu & Jiang, Weihua, 2023. "Bifurcations in a diffusive predator–prey system with linear harvesting," Chaos, Solitons & Fractals, Elsevier, vol. 169(C).
    7. Chen, Mengxin & Wu, Ranchao, 2023. "Steady states and spatiotemporal evolution of a diffusive predator–prey model," Chaos, Solitons & Fractals, Elsevier, vol. 170(C).
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Yang, Junxiang & Lee, Dongsun & Kwak, Soobin & Ham, Seokjun & Kim, Junseok, 2024. "The Allen–Cahn model with a time-dependent parameter for motion by mean curvature up to the singularity," Chaos, Solitons & Fractals, Elsevier, vol. 182(C).

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Chen, Mengxin & Zheng, Qianqian, 2023. "Diffusion-driven instability of a predator–prey model with interval biological coefficients," Chaos, Solitons & Fractals, Elsevier, vol. 172(C).
    2. Chen, Mengxin & Zheng, Qianqian, 2022. "Predator-taxis creates spatial pattern of a predator-prey model," Chaos, Solitons & Fractals, Elsevier, vol. 161(C).
    3. Chen, Mengxin & Wu, Ranchao & Liu, Hongxia & Fu, Xiaoxue, 2021. "Spatiotemporal complexity in a Leslie-Gower type predator-prey model near Turing-Hopf point," Chaos, Solitons & Fractals, Elsevier, vol. 153(P1).
    4. Ma, Yuanyuan & Dong, Nan & Liu, Na & Xie, Leilei, 2022. "Spatiotemporal and bifurcation characteristics of a nonlinear prey-predator model," Chaos, Solitons & Fractals, Elsevier, vol. 165(P2).
    5. Arancibia-Ibarra, Claudio & Aguirre, Pablo & Flores, José & van Heijster, Peter, 2021. "Bifurcation analysis of a predator-prey model with predator intraspecific interactions and ratio-dependent functional response," Applied Mathematics and Computation, Elsevier, vol. 402(C).
    6. Zhao, Xin & Zeng, Zhijun, 2020. "Stationary distribution and extinction of a stochastic ratio-dependent predator–prey system with stage structure for the predator," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 545(C).
    7. Souna, Fethi & Belabbas, Mustapha & Menacer, Youssaf, 2023. "Complex pattern formations induced by the presence of cross-diffusion in a generalized predator–prey model incorporating the Holling type functional response and generalization of habitat complexity e," Mathematics and Computers in Simulation (MATCOM), Elsevier, vol. 204(C), pages 597-618.
    8. Wang, Caiyun, 2015. "Rich dynamics of a predator–prey model with spatial motion," Applied Mathematics and Computation, Elsevier, vol. 260(C), pages 1-9.
    9. Wang, Fatao & Yang, Ruizhi, 2023. "Spatial pattern formation driven by the cross-diffusion in a predator–prey model with Holling type functional response," Chaos, Solitons & Fractals, Elsevier, vol. 174(C).
    10. Chen, Mengxin & Wu, Ranchao, 2023. "Steady states and spatiotemporal evolution of a diffusive predator–prey model," Chaos, Solitons & Fractals, Elsevier, vol. 170(C).
    11. Lv, Yun-fei & Li, Tongtong & Pei, Yongzhen & Yuan, Rong, 2016. "A complete analysis of the global dynamics of a diffusive predator and toxic prey model," Applied Mathematics and Computation, Elsevier, vol. 291(C), pages 182-196.
    12. Chen, Mengxin & Wu, Ranchao & Chen, Liping, 2020. "Spatiotemporal patterns induced by Turing and Turing-Hopf bifurcations in a predator-prey system," Applied Mathematics and Computation, Elsevier, vol. 380(C).
    13. Sivalingam, S M & Kumar, Pushpendra & Trinh, Hieu & Govindaraj, V., 2024. "A novel L1-Predictor-Corrector method for the numerical solution of the generalized-Caputo type fractional differential equations," Mathematics and Computers in Simulation (MATCOM), Elsevier, vol. 220(C), pages 462-480.
    14. Yange Wang & Xixian Bai, 2024. "An Efficient Linearized Difference Algorithm for a Diffusive Sel ′ kov–Schnakenberg System," Mathematics, MDPI, vol. 12(6), pages 1-15, March.
    15. Zhang, Huayong & Guo, Fenglu & Zou, Hengchao & Zhao, Lei & Wang, Zhongyu & Yuan, Xiaotong & Liu, Zhao, 2024. "Refuge-driven spatiotemporal chaos in a discrete predator-prey system," Chaos, Solitons & Fractals, Elsevier, vol. 182(C).
    16. Lv, Yehu, 2022. "The spatially homogeneous hopf bifurcation induced jointly by memory and general delays in a diffusive system," Chaos, Solitons & Fractals, Elsevier, vol. 156(C).
    17. Zhu, Linhe & Tang, Yuxuan & Shen, Shuling, 2023. "Pattern study and parameter identification of a reaction-diffusion rumor propagation system with time delay," Chaos, Solitons & Fractals, Elsevier, vol. 166(C).
    18. Anita Triska & Agus Yodi Gunawan & Nuning Nuraini, 2023. "The Effects of the Susceptible and Infected Cross-Diffusion Terms on Pattern Formations in an SI Model," Mathematics, MDPI, vol. 11(17), pages 1-18, August.
    19. Huang, Chengdai & Cao, Jinde & Xiao, Min & Alsaedi, Ahmed & Alsaadi, Fuad E., 2017. "Controlling bifurcation in a delayed fractional predator–prey system with incommensurate orders," Applied Mathematics and Computation, Elsevier, vol. 293(C), pages 293-310.
    20. Shivam, & Singh, Kuldeep & Kumar, Mukesh & Dubey, Ramu & Singh, Teekam, 2022. "Untangling role of cooperative hunting among predators and herd behavior in prey with a dynamical systems approach," Chaos, Solitons & Fractals, Elsevier, vol. 162(C).

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:chsofr:v:176:y:2023:i:c:s096007792301055x. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Thayer, Thomas R. (email available below). General contact details of provider: https://www.journals.elsevier.com/chaos-solitons-and-fractals .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.