Trade-off and chaotic dynamics in a two-prey one-predator model with refuge, environmental noise and seasonal effects
Author
Abstract
Suggested Citation
DOI: 10.1016/j.matcom.2024.07.011
Download full text from publisher
As the access to this document is restricted, you may want to search for a different version of it.
References listed on IDEAS
- Souna, Fethi & Lakmeche, Abdelkader & Djilali, Salih, 2020. "Spatiotemporal patterns in a diffusive predator-prey model with protection zone and predator harvesting," Chaos, Solitons & Fractals, Elsevier, vol. 140(C).
- Jana, Debaldev & Agrawal, Rashmi & Upadhyay, Ranjit Kumar, 2015. "Dynamics of generalist predator in a stochastic environment: Effect of delayed growth and prey refuge," Applied Mathematics and Computation, Elsevier, vol. 268(C), pages 1072-1094.
- Sk, Nazmul & Tiwari, Pankaj Kumar & Pal, Samares, 2022. "A delay nonautonomous model for the impacts of fear and refuge in a three species food chain model with hunting cooperation," Mathematics and Computers in Simulation (MATCOM), Elsevier, vol. 192(C), pages 136-166.
- Das, Bijoy Kumar & Sahoo, Debgopal & Samanta, G.P., 2022. "Impact of fear in a delay-induced predator–prey system with intraspecific competition within predator species," Mathematics and Computers in Simulation (MATCOM), Elsevier, vol. 191(C), pages 134-156.
- Leena Lindström & Rauno V. Alatalo & Johanna Mappes & Marianna Riipi & Laura Vertainen, 1999. "Can aposematic signals evolve by gradual change?," Nature, Nature, vol. 397(6716), pages 249-251, January.
Most related items
These are the items that most often cite the same works as this one and are cited by the same works as this one.- Jana, Debaldev & Pathak, Rachana & Agarwal, Manju, 2016. "On the stability and Hopf bifurcation of a prey-generalist predator system with independent age-selective harvesting," Chaos, Solitons & Fractals, Elsevier, vol. 83(C), pages 252-273.
- Bi, Zhimin & Liu, Shutang & Ouyang, Miao, 2022. "Spatial dynamics of a fractional predator-prey system with time delay and Allee effect," Chaos, Solitons & Fractals, Elsevier, vol. 162(C).
- Bentout, Soufiane & Djilali, Salih & Kumar, Sunil, 2021. "Mathematical analysis of the influence of prey escaping from prey herd on three species fractional predator-prey interaction model," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 572(C).
- Mondal, Bapin & Ghosh, Uttam & Sarkar, Susmita & Tiwari, Pankaj Kumar, 2024. "A generalist predator–prey system with the effects of fear and refuge in deterministic and stochastic environments," Mathematics and Computers in Simulation (MATCOM), Elsevier, vol. 225(C), pages 968-991.
- Yuke Zhang & Xinzhu Meng, 2022. "Dynamics Analysis of a Predator–Prey Model with Hunting Cooperative and Nonlinear Stochastic Disturbance," Mathematics, MDPI, vol. 10(16), pages 1-18, August.
- Souna, Fethi & Belabbas, Mustapha & Menacer, Youssaf, 2023. "Complex pattern formations induced by the presence of cross-diffusion in a generalized predator–prey model incorporating the Holling type functional response and generalization of habitat complexity e," Mathematics and Computers in Simulation (MATCOM), Elsevier, vol. 204(C), pages 597-618.
- Sk, Nazmul & Mondal, Bapin & Thirthar, Ashraf Adnan & Alqudah, Manar A. & Abdeljawad, Thabet, 2023. "Bistability and tristability in a deterministic prey–predator model: Transitions and emergent patterns in its stochastic counterpart," Chaos, Solitons & Fractals, Elsevier, vol. 176(C).
- Aybar, I. Kusbeyzi & Aybar, O.O. & Dukarić, M. & Ferčec, B., 2018. "Dynamical analysis of a two prey-one predator system with quadratic self interaction," Applied Mathematics and Computation, Elsevier, vol. 333(C), pages 118-132.
- Saha, Sangeeta & Sahoo, Debgopal & Samanta, Guruprasad, 2023. "Role of predation efficiency in prey–predator dynamics incorporating switching effect," Mathematics and Computers in Simulation (MATCOM), Elsevier, vol. 209(C), pages 299-323.
- Pandey, Soumik & Ghosh, Uttam & Das, Debashis & Chakraborty, Sarbani & Sarkar, Abhijit, 2024. "Rich dynamics of a delay-induced stage-structure prey–predator model with cooperative behaviour in both species and the impact of prey refuge," Mathematics and Computers in Simulation (MATCOM), Elsevier, vol. 216(C), pages 49-76.
- Pal, Debjit & Kesh, Dipak & Mukherjee, Debasis, 2024. "Cross-diffusion mediated Spatiotemporal patterns in a predator–prey system with hunting cooperation and fear effect," Mathematics and Computers in Simulation (MATCOM), Elsevier, vol. 220(C), pages 128-147.
- Kumbhakar, Ruma & Hossain, Mainul & Karmakar, Sarbari & Pal, Nikhil, 2024. "An investigation of the parameter space in a tri-trophic food chain model with refuge," Mathematics and Computers in Simulation (MATCOM), Elsevier, vol. 217(C), pages 37-59.
- Haoming Shi & Fei Xu & Jinfu Cheng & Victor Shi, 2023. "Exploring the Evolution of the Food Chain under Environmental Pollution with Mathematical Modeling and Numerical Simulation," Sustainability, MDPI, vol. 15(13), pages 1-17, June.
- Dutta, Protyusha & Sahoo, Debgopal & Mondal, Sudeshna & Samanta, Guruprasad, 2022. "Dynamical complexity of a delay-induced eco-epidemic model with Beddington–DeAngelis incidence rate," Mathematics and Computers in Simulation (MATCOM), Elsevier, vol. 197(C), pages 45-90.
- Nirapada Santra & Sudeshna Mondal & Guruprasad Samanta, 2022. "Complex Dynamics of a Predator–Prey Interaction with Fear Effect in Deterministic and Fluctuating Environments," Mathematics, MDPI, vol. 10(20), pages 1-38, October.
- Shang, Zuchong & Qiao, Yuanhua, 2024. "Complex dynamics of a four-species food web model with nonlinear top predator harvesting and fear effect," Mathematics and Computers in Simulation (MATCOM), Elsevier, vol. 223(C), pages 458-484.
- Jana, Debaldev & Banerjee, Aniket & Samanta, G.P., 2017. "Degree of prey refuges: Control the competition among prey and foraging ability of predator," Chaos, Solitons & Fractals, Elsevier, vol. 104(C), pages 350-362.
- à Ziem, D.C. Bitang & Gninzanlong, C.L. & Tabi, C.B. & Kofané, T.C., 2021. "Dynamics and pattern formation of a diffusive predator - prey model in the subdiffusive regime in presence of toxicity," Chaos, Solitons & Fractals, Elsevier, vol. 151(C).
- Sajan, & Dubey, Balram & Sasmal, Sourav Kumar, 2022. "Chaotic dynamics of a plankton-fish system with fear and its carry over effects in the presence of a discrete delay," Chaos, Solitons & Fractals, Elsevier, vol. 160(C).
- Wang, Yong & Zhou, Xu & Jiang, Weihua, 2023. "Bifurcations in a diffusive predator–prey system with linear harvesting," Chaos, Solitons & Fractals, Elsevier, vol. 169(C).
More about this item
Keywords
Prey–predator model; Fear effect; Refuge; Chaos; Seasonality; Stochasticity; Multistability;All these keywords.
Statistics
Access and download statisticsCorrections
All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:matcom:v:226:y:2024:i:c:p:218-245. See general information about how to correct material in RePEc.
If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.
If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .
If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.
For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.journals.elsevier.com/mathematics-and-computers-in-simulation/ .
Please note that corrections may take a couple of weeks to filter through the various RePEc services.