IDEAS home Printed from https://ideas.repec.org/a/eee/phsmap/v496y2018icp446-460.html
   My bibliography  Save this article

Turing–Hopf bifurcations in a predator–prey model with herd behavior, quadratic mortality and prey-taxis

Author

Listed:
  • Liu, Xia
  • Zhang, Tonghua
  • Meng, Xinzhu
  • Zhang, Tongqian

Abstract

In this paper, we propose a predator–prey model with herd behavior and prey-taxis. Then, we analyze the stability and bifurcation of the positive equilibrium of the model subject to the homogeneous Neumann boundary condition. By using an abstract bifurcation theory and taking prey-tactic sensitivity coefficient as the bifurcation parameter, we obtain a branch of stable nonconstant solutions bifurcating from the positive equilibrium. Our results show that prey-taxis can yield the occurrence of spatial patterns.

Suggested Citation

  • Liu, Xia & Zhang, Tonghua & Meng, Xinzhu & Zhang, Tongqian, 2018. "Turing–Hopf bifurcations in a predator–prey model with herd behavior, quadratic mortality and prey-taxis," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 496(C), pages 446-460.
  • Handle: RePEc:eee:phsmap:v:496:y:2018:i:c:p:446-460
    DOI: 10.1016/j.physa.2018.01.006
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S0378437118300062
    Download Restriction: Full text for ScienceDirect subscribers only. Journal offers the option of making the article available online on Science direct for a fee of $3,000

    File URL: https://libkey.io/10.1016/j.physa.2018.01.006?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Camara, B.I. & Haque, M. & Mokrani, H., 2016. "Patterns formations in a diffusive ratio-dependent predator–prey model of interacting populations," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 461(C), pages 374-383.
    2. Zhang, Tongqian & Ma, Wanbiao & Meng, Xinzhu & Zhang, Tonghua, 2015. "Periodic solution of a prey–predator model with nonlinear state feedback control," Applied Mathematics and Computation, Elsevier, vol. 266(C), pages 95-107.
    3. Ghorai, Santu & Poria, Swarup, 2016. "Pattern formation and control of spatiotemporal chaos in a reaction diffusion prey–predator system supplying additional food," Chaos, Solitons & Fractals, Elsevier, vol. 85(C), pages 57-67.
    4. Meng, Xin-zhu & Zhao, Sheng-nan & Zhang, Wen-yan, 2015. "Adaptive dynamics analysis of a predator–prey model with selective disturbance," Applied Mathematics and Computation, Elsevier, vol. 266(C), pages 946-958.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Shivam, & Singh, Kuldeep & Kumar, Mukesh & Dubey, Ramu & Singh, Teekam, 2022. "Untangling role of cooperative hunting among predators and herd behavior in prey with a dynamical systems approach," Chaos, Solitons & Fractals, Elsevier, vol. 162(C).
    2. Guo, Xiaoxia & Zhu, Chunjuan & Ruan, Dehao, 2019. "Dynamic behaviors of a predator–prey model perturbed by a complex type of noises," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 523(C), pages 1024-1037.
    3. Djilali, Salih, 2019. "Impact of prey herd shape on the predator-prey interaction," Chaos, Solitons & Fractals, Elsevier, vol. 120(C), pages 139-148.
    4. Meng Zhu & Jing Li & Xinze Lian, 2022. "Pattern Dynamics of Cross Diffusion Predator–Prey System with Strong Allee Effect and Hunting Cooperation," Mathematics, MDPI, vol. 10(17), pages 1-20, September.
    5. Zhenzhen Shi & Yaning Li & Huidong Cheng, 2019. "Dynamic Analysis of a Pest Management Smith Model with Impulsive State Feedback Control and Continuous Delay," Mathematics, MDPI, vol. 7(7), pages 1-15, July.
    6. Yan, Shuixian & Jia, Dongxue & Zhang, Tonghua & Yuan, Sanling, 2020. "Pattern dynamics in a diffusive predator-prey model with hunting cooperations," Chaos, Solitons & Fractals, Elsevier, vol. 130(C).
    7. Liu, Yanwei & Zhang, Tonghua & Liu, Xia, 2020. "Investigating the interactions between Allee effect and harvesting behaviour of a single species model: An evolutionary dynamics approach," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 549(C).
    8. Jonathan Bell & Evan C. Haskell, 2021. "Attraction–repulsion taxis mechanisms in a predator–prey model," Partial Differential Equations and Applications, Springer, vol. 2(3), pages 1-29, June.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Shan, Yaonan & She, Kun & Zhong, Shouming & Zhong, Qishui & Shi, Kaibo & Zhao, Can, 2018. "Exponential stability and extended dissipativity criteria for generalized discrete-time neural networks with additive time-varying delays," Applied Mathematics and Computation, Elsevier, vol. 333(C), pages 145-168.
    2. Li, Hongjie & Zhu, Yinglian & jing, Liu & ying, Wang, 2018. "Consensus of second-order delayed nonlinear multi-agent systems via node-based distributed adaptive completely intermittent protocols," Applied Mathematics and Computation, Elsevier, vol. 326(C), pages 1-15.
    3. Li, Qian & Liu, Xinzhi & Zhu, Qingxin & Zhong, Shouming & Zhang, Dian, 2019. "Distributed state estimation for stochastic discrete-time sensor networks with redundant channels," Applied Mathematics and Computation, Elsevier, vol. 343(C), pages 230-246.
    4. Feifei Bian & Wencai Zhao & Yi Song & Rong Yue, 2017. "Dynamical Analysis of a Class of Prey-Predator Model with Beddington-DeAngelis Functional Response, Stochastic Perturbation, and Impulsive Toxicant Input," Complexity, Hindawi, vol. 2017, pages 1-18, December.
    5. Yang, Ruizhi, 2017. "Bifurcation analysis of a diffusive predator–prey system with Crowley–Martin functional response and delay," Chaos, Solitons & Fractals, Elsevier, vol. 95(C), pages 131-139.
    6. Tian, Yuan & Li, Chunxue & Liu, Jing, 2023. "Complex dynamics and optimal harvesting strategy of competitive harvesting models with interval-valued imprecise parameters," Chaos, Solitons & Fractals, Elsevier, vol. 167(C).
    7. Huang, Tousheng & Yang, Hongju & Zhang, Huayong & Cong, Xuebing & Pan, Ge, 2018. "Diverse self-organized patterns and complex pattern transitions in a discrete ratio-dependent predator–prey system," Applied Mathematics and Computation, Elsevier, vol. 326(C), pages 141-158.
    8. Wu, Daiyong & Zhao, Min, 2019. "Qualitative analysis for a diffusive predator–prey model with hunting cooperative," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 515(C), pages 299-309.
    9. Sun, Kaibiao & Zhang, Tonghua & Tian, Yuan, 2017. "Dynamics analysis and control optimization of a pest management predator–prey model with an integrated control strategy," Applied Mathematics and Computation, Elsevier, vol. 292(C), pages 253-271.
    10. Tian, Yuan & Gao, Yan & Sun, Kaibiao, 2022. "Global dynamics analysis of instantaneous harvest fishery model guided by weighted escapement strategy," Chaos, Solitons & Fractals, Elsevier, vol. 164(C).
    11. Peng, Yahong & Ling, Heyang, 2018. "Pattern formation in a ratio-dependent predator-prey model with cross-diffusion," Applied Mathematics and Computation, Elsevier, vol. 331(C), pages 307-318.
    12. Liu, Fuxiang & Yang, Ruizhi & Tang, Leiyu, 2019. "Hopf bifurcation in a diffusive predator-prey model with competitive interference," Chaos, Solitons & Fractals, Elsevier, vol. 120(C), pages 250-258.
    13. Peng, Yahong & Zhang, Tonghua, 2016. "Turing instability and pattern induced by cross-diffusion in a predator-prey system with Allee effect," Applied Mathematics and Computation, Elsevier, vol. 275(C), pages 1-12.
    14. Ihsan Ullah Khan & Sanyi Tang & Biao Tang, 2019. "The State-Dependent Impulsive Model with Action Threshold Depending on the Pest Density and Its Changing Rate," Complexity, Hindawi, vol. 2019, pages 1-15, June.
    15. Zhou, Weigang & Huang, Chengdai & Xiao, Min & Cao, Jinde, 2019. "Hybrid tactics for bifurcation control in a fractional-order delayed predator–prey model," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 515(C), pages 183-191.
    16. Marick, Sounov & Bhattacharya, Santanu & Bairagi, Nandadulal, 2023. "Dynamic properties of a reaction–diffusion predator–prey model with nonlinear harvesting: A linear and weakly nonlinear analysis," Chaos, Solitons & Fractals, Elsevier, vol. 175(P1).
    17. Bhunia, Bidhan & Ghorai, Santu & Kar, Tapan Kumar & Biswas, Samir & Bhutia, Lakpa Thendup & Debnath, Papiya, 2023. "A study of a spatiotemporal delayed predator–prey model with prey harvesting: Constant and periodic diffusion," Chaos, Solitons & Fractals, Elsevier, vol. 175(P1).
    18. Bor-Sen Chen & Xiangyun Lin & Weihai Zhang & Tianshou Zhou, 2018. "On the System Entropy and Energy Dissipativity of Stochastic Systems and Their Application in Biological Systems," Complexity, Hindawi, vol. 2018, pages 1-18, December.
    19. Ghorai, Santu & Poria, Swarup, 2016. "Turing patterns induced by cross-diffusion in a predator-prey system in presence of habitat complexity," Chaos, Solitons & Fractals, Elsevier, vol. 91(C), pages 421-429.
    20. Ghorai, Santu & Chakraborty, Bhaskar & Bairagi, Nandadulal, 2021. "Preferential selection of zooplankton and emergence of spatiotemporal patterns in plankton population," Chaos, Solitons & Fractals, Elsevier, vol. 153(P1).

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:phsmap:v:496:y:2018:i:c:p:446-460. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.journals.elsevier.com/physica-a-statistical-mechpplications/ .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.