IDEAS home Printed from https://ideas.repec.org/a/eee/apmaco/v433y2022ics0096300322004672.html
   My bibliography  Save this article

Extinction, persistence and density function analysis of a stochastic two-strain disease model with drug resistance mutation

Author

Listed:
  • Liu, Yue

Abstract

Drug resistance is a global health and development threat. However, its effect of emergence on disease dynamics is still poorly understood. In this paper, we develop a novel stochastic epidemic model where drug-sensitive and drug-resistant infected groups interact through the mutation. Firstly, we propose and prove the existence and uniqueness of the global positive solution. Then sufficient conditions for the extinction and persistence of the drug-sensitive and drug-resistant infections are investigated. By constructing appropriate Lyapunov functions, we verify the existence of a stationary distribution of the positive solution under the stochastic condition that R^s>1 and R^m>1. Furthermore, the explicit expression of probability density function around the quasi-endemic equilibrium is derived by solving the corresponding Fokker-Planck equation, which is guaranteed by the criteria R^s>1 and R^s>R^m. Finally, some numerical simulations are presented to verify the analytical results and a brief conclusion is drawn.

Suggested Citation

  • Liu, Yue, 2022. "Extinction, persistence and density function analysis of a stochastic two-strain disease model with drug resistance mutation," Applied Mathematics and Computation, Elsevier, vol. 433(C).
  • Handle: RePEc:eee:apmaco:v:433:y:2022:i:c:s0096300322004672
    DOI: 10.1016/j.amc.2022.127393
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S0096300322004672
    Download Restriction: Full text for ScienceDirect subscribers only

    File URL: https://libkey.io/10.1016/j.amc.2022.127393?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Chang, Zhengbo & Meng, Xinzhu & Lu, Xiao, 2017. "Analysis of a novel stochastic SIRS epidemic model with two different saturated incidence rates," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 472(C), pages 103-116.
    2. Amine El Koufi & Abdelkrim Bennar & Noura Yousfi & Eric Campos, 2021. "A Stochastic Switched Epidemic Model with Two Epidemic Diseases," Complexity, Hindawi, vol. 2021, pages 1-13, March.
    3. Yang, Yali & Li, Jianquan & Ma, Zhien & Liu, Luju, 2010. "Global stability of two models with incomplete treatment for tuberculosis," Chaos, Solitons & Fractals, Elsevier, vol. 43(1), pages 79-85.
    4. Han, Bingtao & Jiang, Daqing & Hayat, Tasawar & Alsaedi, Ahmed & Ahmad, Bashir, 2020. "Stationary distribution and extinction of a stochastic staged progression AIDS model with staged treatment and second-order perturbation," Chaos, Solitons & Fractals, Elsevier, vol. 140(C).
    5. Liu, Qun & Jiang, Daqing & Shi, Ningzhong & Hayat, Tasawar & Ahmad, Bashir, 2017. "Stationary distribution and extinction of a stochastic SEIR epidemic model with standard incidence," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 476(C), pages 58-69.
    6. Ullah, Saif & Khan, Muhammad Altaf & Farooq, Muhammad & Gul, Taza, 2019. "Modeling and analysis of Tuberculosis (TB) in Khyber Pakhtunkhwa, Pakistan," Mathematics and Computers in Simulation (MATCOM), Elsevier, vol. 165(C), pages 181-199.
    7. Liu, Qun & Chen, Qingmei & Jiang, Daqing, 2016. "The threshold of a stochastic delayed SIR epidemic model with temporary immunity," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 450(C), pages 115-125.
    8. Zhou, Baoquan & Han, Bingtao & Jiang, Daqing & Hayat, Tasawar & Alsaedi, Ahmed, 2021. "Ergodic stationary distribution and extinction of a hybrid stochastic SEQIHR epidemic model with media coverage, quarantine strategies and pre-existing immunity under discrete Markov switching," Applied Mathematics and Computation, Elsevier, vol. 410(C).
    9. Liu, Qun & Jiang, Daqing & Hayat, Tasawar & Alsaedi, Ahmed & Ahmad, Bashir, 2020. "Threshold behavior in two types of stochastic three strains influenza virus models," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 549(C).
    10. Zhou, Baoquan & Zhang, Xinhong & Jiang, Daqing, 2020. "Dynamics and density function analysis of a stochastic SVI epidemic model with half saturated incidence rate," Chaos, Solitons & Fractals, Elsevier, vol. 137(C).
    11. Yan Wang & Daqing Jiang, 2017. "Stationary Distribution and Extinction of a Stochastic Viral Infection Model," Discrete Dynamics in Nature and Society, Hindawi, vol. 2017, pages 1-13, October.
    12. Kuddus, Md Abdul & McBryde, Emma S. & Adekunle, Adeshina I. & White, Lisa J. & Meehan, Michael T., 2021. "Mathematical analysis of a two-strain disease model with amplification," Chaos, Solitons & Fractals, Elsevier, vol. 143(C).
    13. Liu, Qun & Jiang, Daqing & Shi, Ningzhong & Hayat, Tasawar & Alsaedi, Ahmed, 2017. "Stationary distribution and extinction of a stochastic SIRS epidemic model with standard incidence," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 469(C), pages 510-517.
    14. Liu, Qun & Jiang, Daqing, 2016. "The threshold of a stochastic delayed SIR epidemic model with vaccination," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 461(C), pages 140-147.
    15. Liu, Yue & Lo, Wing-Cheong, 2021. "Deterministic and stochastic analysis for different types of regulations in the spontaneous emergence of cell polarity," Chaos, Solitons & Fractals, Elsevier, vol. 144(C).
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Zhou, Baoquan & Han, Bingtao & Jiang, Daqing, 2021. "Ergodic property, extinction and density function of a stochastic SIR epidemic model with nonlinear incidence and general stochastic perturbations," Chaos, Solitons & Fractals, Elsevier, vol. 152(C).
    2. Zhou, Baoquan & Han, Bingtao & Jiang, Daqing & Hayat, Tasawar & Alsaedi, Ahmed, 2021. "Ergodic stationary distribution and extinction of a hybrid stochastic SEQIHR epidemic model with media coverage, quarantine strategies and pre-existing immunity under discrete Markov switching," Applied Mathematics and Computation, Elsevier, vol. 410(C).
    3. Liu, Qun & Jiang, Daqing & Hayat, Tasawar & Alsaedi, Ahmed, 2018. "Stationary distribution of a stochastic delayed SVEIR epidemic model with vaccination and saturation incidence," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 512(C), pages 849-863.
    4. Xin, Ming-Zhen & Wang, Bin-Guo, 2020. "Stationary distribution and extinction of a stochastic tuberculosis model," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 545(C).
    5. Fan, Kuangang & Zhang, Yan & Gao, Shujing & Wei, Xiang, 2017. "A class of stochastic delayed SIR epidemic models with generalized nonlinear incidence rate and temporary immunity," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 481(C), pages 198-208.
    6. Lan, Guijie & Chen, Zhewen & Wei, Chunjin & Zhang, Shuwen, 2018. "Stationary distribution of a stochastic SIQR epidemic model with saturated incidence and degenerate diffusion," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 511(C), pages 61-77.
    7. Fu, Xiaoming, 2019. "On invariant measures and the asymptotic behavior of a stochastic delayed SIRS epidemic model," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 523(C), pages 1008-1023.
    8. Wen, Buyu & Teng, Zhidong & Li, Zhiming, 2018. "The threshold of a periodic stochastic SIVS epidemic model with nonlinear incidence," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 508(C), pages 532-549.
    9. Han, Bingtao & Jiang, Daqing & Hayat, Tasawar & Alsaedi, Ahmed & Ahmad, Bashir, 2020. "Stationary distribution and extinction of a stochastic staged progression AIDS model with staged treatment and second-order perturbation," Chaos, Solitons & Fractals, Elsevier, vol. 140(C).
    10. Lu, Chun & Liu, Honghui & Zhang, De, 2021. "Dynamics and simulations of a second order stochastically perturbed SEIQV epidemic model with saturated incidence rate," Chaos, Solitons & Fractals, Elsevier, vol. 152(C).
    11. Liu, Qun & Jiang, Daqing & Hayat, Tasawar & Alsaedi, Ahmed & Ahmad, Bashir, 2020. "Dynamical behavior of a higher order stochastically perturbed SIRI epidemic model with relapse and media coverage," Chaos, Solitons & Fractals, Elsevier, vol. 139(C).
    12. Jia, Fangju & Lv, Guangying, 2018. "Dynamic analysis of a stochastic rumor propagation model," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 490(C), pages 613-623.
    13. Bashkirtseva, Irina & Ryashko, Lev & Ryazanova, Tatyana, 2020. "Analysis of regular and chaotic dynamics in a stochastic eco-epidemiological model," Chaos, Solitons & Fractals, Elsevier, vol. 131(C).
    14. Liu, Qun & Jiang, Daqing & Hayat, Tasawar & Alsaedi, Ahmed, 2018. "Long-time behavior of a stochastic logistic equation with distributed delay and nonlinear perturbation," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 508(C), pages 289-304.
    15. Jia, Pingqi & Wang, Chao & Zhang, Gaoyu & Ma, Jianfeng, 2019. "A rumor spreading model based on two propagation channels in social networks," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 524(C), pages 342-353.
    16. Wanduku, Divine, 2017. "Complete global analysis of a two-scale network SIRS epidemic dynamic model with distributed delay and random perturbations," Applied Mathematics and Computation, Elsevier, vol. 294(C), pages 49-76.
    17. Rajasekar, S.P. & Pitchaimani, M., 2020. "Ergodic stationary distribution and extinction of a stochastic SIRS epidemic model with logistic growth and nonlinear incidence," Applied Mathematics and Computation, Elsevier, vol. 377(C).
    18. Wang, Qi & Xiang, Kainan & Zhu, Chunhui & Zou, Lang, 2023. "Stochastic SEIR epidemic models with virus mutation and logistic growth of susceptible populations," Mathematics and Computers in Simulation (MATCOM), Elsevier, vol. 212(C), pages 289-309.
    19. Qi, Haokun & Zhang, Shengqiang & Meng, Xinzhu & Dong, Huanhe, 2018. "Periodic solution and ergodic stationary distribution of two stochastic SIQS epidemic systems," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 508(C), pages 223-241.
    20. Hattaf, Khalid & Mahrouf, Marouane & Adnani, Jihad & Yousfi, Noura, 2018. "Qualitative analysis of a stochastic epidemic model with specific functional response and temporary immunity," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 490(C), pages 591-600.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:apmaco:v:433:y:2022:i:c:s0096300322004672. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: https://www.journals.elsevier.com/applied-mathematics-and-computation .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.