IDEAS home Printed from https://ideas.repec.org/a/eee/matcom/v228y2025icp431-465.html
   My bibliography  Save this article

A study of stochastically perturbed epidemic model of HPV infection and cervical cancer in Indian female population

Author

Listed:
  • Midhun, T.A.
  • Murugesan, K.

Abstract

This study introduces a novel stochastic SICR (susceptible, infected, cervical cancer and recovered) model to illustrate HPV (Human papillomavirus) infection dynamics and its impact on cervical cancer in the female population of India. We prove the existence of a unique positive global solution that ensures stochastic boundedness and permanence. Moreover, sufficient conditions for HPV extinction are established through the stochastic extinction parameter R0e, indicating that the infection will die out if R0e<1. Conversely, the persistence of HPV is established by the existence and uniqueness of an ergodic stationary distribution of the solution when the stochastic threshold R0s>1, using the suitable selection of Lyapunov functions. Furthermore, data on cervical cancer cases in India from 2016 to 2020 is fitted to the model, providing parameter values suitable for the region. The theoretical findings are validated using the Positive-Preserving Truncated Euler–Maruyama method. Additionally, effective control strategies for India are suggested based on model predictions and sensitivity of key parameters.

Suggested Citation

  • Midhun, T.A. & Murugesan, K., 2025. "A study of stochastically perturbed epidemic model of HPV infection and cervical cancer in Indian female population," Mathematics and Computers in Simulation (MATCOM), Elsevier, vol. 228(C), pages 431-465.
  • Handle: RePEc:eee:matcom:v:228:y:2025:i:c:p:431-465
    DOI: 10.1016/j.matcom.2024.09.008
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S037847542400363X
    Download Restriction: Full text for ScienceDirect subscribers only

    File URL: https://libkey.io/10.1016/j.matcom.2024.09.008?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Omame, Andrew & Abbas, Mujahid & Din, Anwarud, 2023. "Global asymptotic stability, extinction and ergodic stationary distribution in a stochastic model for dual variants of SARS-CoV-2," Mathematics and Computers in Simulation (MATCOM), Elsevier, vol. 204(C), pages 302-336.
    2. Lichtenstein, Bronwen, 2003. "Stigma as a barrier to treatment of sexually transmitted infection in the American deep south: issues of race, gender and poverty," Social Science & Medicine, Elsevier, vol. 57(12), pages 2435-2445, December.
    3. Ge, Junyan & Zuo, Wenjie & Jiang, Daqing, 2022. "Stationary distribution and density function analysis of a stochastic epidemic HBV model," Mathematics and Computers in Simulation (MATCOM), Elsevier, vol. 191(C), pages 232-255.
    4. Liu, Qun & Jiang, Daqing, 2023. "Stationary distribution and probability density for a stochastic SEIR-type model of coronavirus (COVID-19) with asymptomatic carriers," Chaos, Solitons & Fractals, Elsevier, vol. 169(C).
    5. Chinnadurai, M. & Fatini, Mohamed El & Rathinasamy, A., 2023. "Stochastic perturbation to 2-LTR dynamical model in HIV infected patients," Mathematics and Computers in Simulation (MATCOM), Elsevier, vol. 204(C), pages 473-497.
    6. Marrazzo, J.M. & Koutsky, L.A. & Kiviat, N.B. & Kuypers, J.M. & Stine, K., 2001. "Papanicolaou test screening and prevalence of genital human papillomavirus among women who have sex with women," American Journal of Public Health, American Public Health Association, vol. 91(6), pages 947-952.
    7. James Mitchell Crow, 2012. "HPV: The global burden," Nature, Nature, vol. 488(7413), pages 2-3, August.
    8. Mao, Xuerong & Marion, Glenn & Renshaw, Eric, 2002. "Environmental Brownian noise suppresses explosions in population dynamics," Stochastic Processes and their Applications, Elsevier, vol. 97(1), pages 95-110, January.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Lin Hu & Lin-Fei Nie, 2022. "Dynamics of a Stochastic HIV Infection Model with Logistic Growth and CTLs Immune Response under Regime Switching," Mathematics, MDPI, vol. 10(19), pages 1-20, September.
    2. Tong, Jinying & Zhang, Zhenzhong & Bao, Jianhai, 2013. "The stationary distribution of the facultative population model with a degenerate noise," Statistics & Probability Letters, Elsevier, vol. 83(2), pages 655-664.
    3. Ellen F Eaton & Erika L Austin & Catherine K Dodson & Jose P Heudebert & D’Netria Jackson & Christina A Muzny, 2018. "Do young black men who have sex with men in the deep south prefer traditional over alternative STI testing?," PLOS ONE, Public Library of Science, vol. 13(12), pages 1-13, December.
    4. Huang, Zaitang & Cao, Junfei, 2018. "Ergodicity and bifurcations for stochastic logistic equation with non-Gaussian Lévy noise," Applied Mathematics and Computation, Elsevier, vol. 330(C), pages 1-10.
    5. Shi, Zhenfeng & Zhang, Xinhong & Jiang, Daqing, 2019. "Dynamics of an avian influenza model with half-saturated incidence," Applied Mathematics and Computation, Elsevier, vol. 355(C), pages 399-416.
    6. Liu, Meng & Wang, Ke, 2009. "Survival analysis of stochastic single-species population models in polluted environments," Ecological Modelling, Elsevier, vol. 220(9), pages 1347-1357.
    7. Qi, Kai & Jiang, Daqing & Hayat, Tasawar & Alsaedi, Ahmed, 2021. "Virus dynamic behavior of a stochastic HIV/AIDS infection model including two kinds of target cell infections and CTL immune responses," Mathematics and Computers in Simulation (MATCOM), Elsevier, vol. 188(C), pages 548-570.
    8. Liu, Qun & Jiang, Daqing & Shi, Ningzhong & Hayat, Tasawar & Ahmad, Bashir, 2017. "Stationary distribution and extinction of a stochastic SEIR epidemic model with standard incidence," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 476(C), pages 58-69.
    9. Qi, Haokun & Zhang, Shengqiang & Meng, Xinzhu & Dong, Huanhe, 2018. "Periodic solution and ergodic stationary distribution of two stochastic SIQS epidemic systems," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 508(C), pages 223-241.
    10. Zhou, Baoquan & Han, Bingtao & Jiang, Daqing & Hayat, Tasawar & Alsaedi, Ahmed, 2021. "Ergodic stationary distribution and extinction of a hybrid stochastic SEQIHR epidemic model with media coverage, quarantine strategies and pre-existing immunity under discrete Markov switching," Applied Mathematics and Computation, Elsevier, vol. 410(C).
    11. Liu, Qun & Jiang, Daqing & Shi, Ningzhong & Hayat, Tasawar & Alsaedi, Ahmed, 2017. "Stationary distribution and extinction of a stochastic SIRS epidemic model with standard incidence," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 469(C), pages 510-517.
    12. Liu, Meng & Wang, Ke, 2013. "Dynamics and simulations of a logistic model with impulsive perturbations in a random environment," Mathematics and Computers in Simulation (MATCOM), Elsevier, vol. 92(C), pages 53-75.
    13. Ji, Chunyan & Jiang, Daqing & Lei, Dongxia, 2019. "Dynamical behavior of a one predator and two independent preys system with stochastic perturbations," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 515(C), pages 649-664.
    14. El Attouga, Sanae & Bouggar, Driss & El Fatini, Mohamed & Hilbert, Astrid & Pettersson, Roger, 2023. "Lévy noise with infinite activity and the impact on the dynamic of an SIRS epidemic model," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 618(C).
    15. Wang, Kai & Fan, Hongjie & Zhu, Yanling, 2025. "Stationary distribution of a stochastic generalized SIRI epidemic model with reinfection and relapse," Statistics & Probability Letters, Elsevier, vol. 216(C).
    16. Das, Parthasakha & Das, Pritha & Mukherjee, Sayan, 2020. "Stochastic dynamics of Michaelis–Menten kinetics based tumor-immune interactions," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 541(C).
    17. Liu, Qun & Chen, Qingmei, 2015. "Dynamics of stochastic delay Lotka–Volterra systems with impulsive toxicant input and Lévy noise in polluted environments," Applied Mathematics and Computation, Elsevier, vol. 256(C), pages 52-67.
    18. Zhao, Xin & Zeng, Zhijun, 2020. "Stationary distribution and extinction of a stochastic ratio-dependent predator–prey system with stage structure for the predator," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 545(C).
    19. Kostić, Vladimir R. & Cvetković, Ljiljana & Cvetković, Dragana Lj., 2016. "Improved stability indicators for empirical food webs," Ecological Modelling, Elsevier, vol. 320(C), pages 1-8.
    20. Saha, Pritam & Mondal, Bapin & Ghosh, Uttam, 2023. "Dynamical behaviors of an epidemic model with partial immunity having nonlinear incidence and saturated treatment in deterministic and stochastic environments," Chaos, Solitons & Fractals, Elsevier, vol. 174(C).

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:matcom:v:228:y:2025:i:c:p:431-465. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.journals.elsevier.com/mathematics-and-computers-in-simulation/ .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.