IDEAS home Printed from https://ideas.repec.org/a/eee/matcom/v204y2023icp473-497.html
   My bibliography  Save this article

Stochastic perturbation to 2-LTR dynamical model in HIV infected patients

Author

Listed:
  • Chinnadurai, M.
  • Fatini, Mohamed El
  • Rathinasamy, A.

Abstract

In this paper, we proposed the stochastic perturbation to study the HIV viral dynamical model. The stochastic epidemic model of 2-LTR HIV infected patients is considered and we prove that the stochastic model admits a unique globally positive solution7 which is bounded and permanent. Then we analyze the necessary conditions for extinction and persistence of the disease by selecting the appropriate Lyapunov functions. The theoretical findings are confirmed by using suitable numerical experiments.

Suggested Citation

  • Chinnadurai, M. & Fatini, Mohamed El & Rathinasamy, A., 2023. "Stochastic perturbation to 2-LTR dynamical model in HIV infected patients," Mathematics and Computers in Simulation (MATCOM), Elsevier, vol. 204(C), pages 473-497.
  • Handle: RePEc:eee:matcom:v:204:y:2023:i:c:p:473-497
    DOI: 10.1016/j.matcom.2022.08.019
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S0378475422003652
    Download Restriction: Full text for ScienceDirect subscribers only

    File URL: https://libkey.io/10.1016/j.matcom.2022.08.019?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Liu, Qun & Jiang, Daqing, 2019. "Dynamical behavior of a stochastic multigroup SIR epidemic model," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 526(C).
    2. Liu, Qun & Jiang, Daqing & Hayat, Tasawar & Ahmad, Bashir, 2017. "Asymptotic behavior of a stochastic delayed HIV-1 infection model with nonlinear incidence," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 486(C), pages 867-882.
    3. Wang, Yan & Jiang, Daqing & Alsaedi, Ahmed & Hayat, Tasawar, 2018. "Modelling a stochastic HIV model with logistic target cell growth and nonlinear immune response function," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 501(C), pages 276-292.
    4. Liu, Qun, 2017. "Asymptotic behaviors of a cell-to-cell HIV-1 infection model perturbed by white noise," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 467(C), pages 407-418.
    5. Huang, Zaitang & Yang, Qigui & Cao, Junfei, 2011. "Complex dynamics in a stochastic internal HIV model," Chaos, Solitons & Fractals, Elsevier, vol. 44(11), pages 954-963.
    6. Wang, Yan & Jiang, Daqing & Hayat, Tasawar & Ahmad, Bashir, 2017. "A stochastic HIV infection model with T-cell proliferation and CTL immune response," Applied Mathematics and Computation, Elsevier, vol. 315(C), pages 477-493.
    7. Liu, Qun & Jiang, Daqing & Shi, Ningzhong & Hayat, Tasawar & Alsaedi, Ahmed, 2017. "Asymptotic behavior of stochastic multi-group epidemic models with distributed delays," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 467(C), pages 527-541.
    8. Rathinasamy, A. & Chinnadurai, M. & Athithan, S., 2021. "Analysis of exact solution of stochastic sex-structured HIV/AIDS epidemic model with effect of screening of infectives," Mathematics and Computers in Simulation (MATCOM), Elsevier, vol. 179(C), pages 213-237.
    9. Mao, Xuerong & Marion, Glenn & Renshaw, Eric, 2002. "Environmental Brownian noise suppresses explosions in population dynamics," Stochastic Processes and their Applications, Elsevier, vol. 97(1), pages 95-110, January.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Wang, Yan & Jiang, Daqing & Alsaedi, Ahmed & Hayat, Tasawar, 2018. "Modelling a stochastic HIV model with logistic target cell growth and nonlinear immune response function," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 501(C), pages 276-292.
    2. Qesmi, Redouane & Hammoumi, Aayah, 2020. "A stochastic delay model of HIV pathogenesis with reactivation of latent reservoirs," Chaos, Solitons & Fractals, Elsevier, vol. 132(C).
    3. Wang, Yan & Qi, Kai & Jiang, Daqing, 2021. "An HIV latent infection model with cell-to-cell transmission and stochastic perturbation," Chaos, Solitons & Fractals, Elsevier, vol. 151(C).
    4. Cheng, Yan & Li, Mingtao & Zhang, Fumin, 2019. "A dynamics stochastic model with HIV infection of CD4+ T-cells driven by Lévy noise," Chaos, Solitons & Fractals, Elsevier, vol. 129(C), pages 62-70.
    5. Rathinasamy, A. & Chinnadurai, M. & Athithan, S., 2021. "Analysis of exact solution of stochastic sex-structured HIV/AIDS epidemic model with effect of screening of infectives," Mathematics and Computers in Simulation (MATCOM), Elsevier, vol. 179(C), pages 213-237.
    6. Qi, Kai & Jiang, Daqing & Hayat, Tasawar & Alsaedi, Ahmed, 2021. "Virus dynamic behavior of a stochastic HIV/AIDS infection model including two kinds of target cell infections and CTL immune responses," Mathematics and Computers in Simulation (MATCOM), Elsevier, vol. 188(C), pages 548-570.
    7. Rajasekar, S.P. & Pitchaimani, M. & Zhu, Quanxin, 2020. "Progressive dynamics of a stochastic epidemic model with logistic growth and saturated treatment," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 538(C).
    8. Shi, Zhenfeng & Jiang, Daqing, 2022. "Dynamical behaviors of a stochastic HTLV-I infection model with general infection form and Ornstein–Uhlenbeck process," Chaos, Solitons & Fractals, Elsevier, vol. 165(P2).
    9. Zhou, Baoquan & Jiang, Daqing & Dai, Yucong & Hayat, Tasawar & Alsaedi, Ahmed, 2021. "Stationary distribution and probability density function of a stochastic SVIS epidemic model with standard incidence and vaccination strategies," Chaos, Solitons & Fractals, Elsevier, vol. 143(C).
    10. Tan, Yiping & Cai, Yongli & Sun, Xiaodan & Wang, Kai & Yao, Ruoxia & Wang, Weiming & Peng, Zhihang, 2022. "A stochastic SICA model for HIV/AIDS transmission," Chaos, Solitons & Fractals, Elsevier, vol. 165(P1).
    11. Zhai, Xuanpei & Li, Wenshuang & Wei, Fengying & Mao, Xuerong, 2023. "Dynamics of an HIV/AIDS transmission model with protection awareness and fluctuations," Chaos, Solitons & Fractals, Elsevier, vol. 169(C).
    12. Lu, Chun, 2021. "Dynamics of a stochastic Markovian switching predator–prey model with infinite memory and general Lévy jumps," Mathematics and Computers in Simulation (MATCOM), Elsevier, vol. 181(C), pages 316-332.
    13. Han, Bingtao & Jiang, Daqing & Hayat, Tasawar & Alsaedi, Ahmed & Ahmad, Bashir, 2020. "Stationary distribution and extinction of a stochastic staged progression AIDS model with staged treatment and second-order perturbation," Chaos, Solitons & Fractals, Elsevier, vol. 140(C).
    14. Wang, Yan & Jiang, Daqing & Hayat, Tasawar & Ahmad, Bashir, 2017. "A stochastic HIV infection model with T-cell proliferation and CTL immune response," Applied Mathematics and Computation, Elsevier, vol. 315(C), pages 477-493.
    15. Li, Qiuyue & Cong, Fuzhong & Liu, Tianbao & Zhou, Yaoming, 2020. "Stationary distribution of a stochastic HIV model with two infective stages," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 554(C).
    16. Akdim, Khadija & Ez-zetouni, Adil & Danane, Jaouad & Allali, Karam, 2020. "Stochastic viral infection model with lytic and nonlytic immune responses driven by Lévy noise," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 549(C).
    17. Lu, Chun & Liu, Honghui & Zhang, De, 2021. "Dynamics and simulations of a second order stochastically perturbed SEIQV epidemic model with saturated incidence rate," Chaos, Solitons & Fractals, Elsevier, vol. 152(C).
    18. Lu, Minmin & Wang, Yan & Jiang, Daqing, 2021. "Stationary distribution and probability density function analysis of a stochastic HIV model with cell-to-cell infection," Applied Mathematics and Computation, Elsevier, vol. 410(C).
    19. Zhang, Beibei & Wang, Hangying & Lv, Guangying, 2018. "Exponential extinction of a stochastic predator–prey model with Allee effect," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 507(C), pages 192-204.
    20. Ma, Yuanlin & Yu, Xingwang, 2020. "The effect of environmental noise on threshold dynamics for a stochastic viral infection model with two modes of transmission and immune impairment," Chaos, Solitons & Fractals, Elsevier, vol. 134(C).

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:matcom:v:204:y:2023:i:c:p:473-497. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.journals.elsevier.com/mathematics-and-computers-in-simulation/ .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.