IDEAS home Printed from https://ideas.repec.org/a/eee/chsofr/v177y2023ics0960077923011372.html
   My bibliography  Save this article

Dynamical analysis of a stochastic epidemic HBV model with log-normal Ornstein–Uhlenbeck process and vertical transmission term

Author

Listed:
  • Wang, Haile
  • Zuo, Wenjie
  • Jiang, Daqing

Abstract

Considering the transmission rate perturbed by log-normal Ornstein–Uhlenbeck process, we develop a stochastic HBV model with vertical transmission term. For higher-dimensional deterministic system, the local asymptotic stability of the endemic equilibrium is given by proving the global stability of the corresponding linearized system. For stochastic system, the existence of stationary distribution is obtained by constructing several suitable Lyapunov functions and using the ergodicity of the Ornstein–Uhlenbeck process and the critical value corresponding to the basic reproduction number for determined system is derived, which means the persistence of the disease. And sufficient conditions for disease extinction are given. Furthermore, by solving five-dimensional Fokker–Planck equation, the exact expression of the probability density function near the quasi-equilibrium is provided to reveal the statistical properties. In the end, numerical simulations illustrate our theoretical results and exhibit the trends of the critical values for persistence and extinction of diseases along with the change of noise intensity and reversion speed.

Suggested Citation

  • Wang, Haile & Zuo, Wenjie & Jiang, Daqing, 2023. "Dynamical analysis of a stochastic epidemic HBV model with log-normal Ornstein–Uhlenbeck process and vertical transmission term," Chaos, Solitons & Fractals, Elsevier, vol. 177(C).
  • Handle: RePEc:eee:chsofr:v:177:y:2023:i:c:s0960077923011372
    DOI: 10.1016/j.chaos.2023.114235
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S0960077923011372
    Download Restriction: Full text for ScienceDirect subscribers only

    File URL: https://libkey.io/10.1016/j.chaos.2023.114235?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Han, Bingtao & Jiang, Daqing, 2023. "Coexistence and extinction for a stochastic vegetation-water model motivated by Black–Karasinski process," Chaos, Solitons & Fractals, Elsevier, vol. 175(P2).
    2. Zhang, Xiaofeng & Yuan, Rong, 2021. "A stochastic chemostat model with mean-reverting Ornstein-Uhlenbeck process and Monod-Haldane response function," Applied Mathematics and Computation, Elsevier, vol. 394(C).
    3. Zhou, Baoquan & Jiang, Daqing & Han, Bingtao & Hayat, Tasawar, 2022. "Threshold dynamics and density function of a stochastic epidemic model with media coverage and mean-reverting Ornstein–Uhlenbeck process," Mathematics and Computers in Simulation (MATCOM), Elsevier, vol. 196(C), pages 15-44.
    4. Shi, Zhenfeng & Zhang, Xinhong & Jiang, Daqing, 2019. "Dynamics of an avian influenza model with half-saturated incidence," Applied Mathematics and Computation, Elsevier, vol. 355(C), pages 399-416.
    5. Ayoubi, Tawfiqullah & Bao, Haibo, 2020. "Persistence and extinction in stochastic delay Logistic equation by incorporating Ornstein-Uhlenbeck process," Applied Mathematics and Computation, Elsevier, vol. 386(C).
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Su, Tan & Yang, Qing & Zhang, Xinhong & Jiang, Daqing, 2023. "Stationary distribution, extinction and probability density function of a stochastic SEIV epidemic model with general incidence and Ornstein–Uhlenbeck process," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 615(C).
    2. Han, Cheng & Wang, Yan & Jiang, Daqing, 2023. "Dynamics analysis of a stochastic HIV model with non-cytolytic cure and Ornstein–Uhlenbeck process," Chaos, Solitons & Fractals, Elsevier, vol. 175(P1).
    3. Han, Bingtao & Jiang, Daqing, 2023. "Coexistence and extinction for a stochastic vegetation-water model motivated by Black–Karasinski process," Chaos, Solitons & Fractals, Elsevier, vol. 175(P2).
    4. Liu, Qun & Jiang, Daqing, 2023. "Analysis of a stochastic inshore–offshore hairtail fishery model with Ornstein–Uhlenbeck process," Chaos, Solitons & Fractals, Elsevier, vol. 172(C).
    5. Zhou, Baoquan & Han, Bingtao & Jiang, Daqing & Hayat, Tasawar & Alsaedi, Ahmed, 2021. "Ergodic stationary distribution and extinction of a hybrid stochastic SEQIHR epidemic model with media coverage, quarantine strategies and pre-existing immunity under discrete Markov switching," Applied Mathematics and Computation, Elsevier, vol. 410(C).
    6. Zhang, Xiaofeng & Yuan, Rong, 2021. "Forward attractor for stochastic chemostat model with multiplicative noise," Chaos, Solitons & Fractals, Elsevier, vol. 153(P1).
    7. Chen, Xingzhi & Tian, Baodan & Xu, Xin & Zhang, Hailan & Li, Dong, 2023. "A stochastic predator–prey system with modified LG-Holling type II functional response," Mathematics and Computers in Simulation (MATCOM), Elsevier, vol. 203(C), pages 449-485.
    8. Zhou, Baoquan & Zhang, Xinhong & Jiang, Daqing, 2020. "Dynamics and density function analysis of a stochastic SVI epidemic model with half saturated incidence rate," Chaos, Solitons & Fractals, Elsevier, vol. 137(C).
    9. Zhou, Baoquan & Jiang, Daqing & Han, Bingtao & Hayat, Tasawar, 2022. "Threshold dynamics and density function of a stochastic epidemic model with media coverage and mean-reverting Ornstein–Uhlenbeck process," Mathematics and Computers in Simulation (MATCOM), Elsevier, vol. 196(C), pages 15-44.
    10. Karim, Md Aktar Ul & Aithal, Vikram & Bhowmick, Amiya Ranjan, 2023. "Random variation in model parameters: A comprehensive review of stochastic logistic growth equation," Ecological Modelling, Elsevier, vol. 484(C).
    11. Fehaid Salem Alshammari & Fahir Talay Akyildiz, 2023. "Epidemic Waves in a Stochastic SIRVI Epidemic Model Incorporating the Ornstein–Uhlenbeck Process," Mathematics, MDPI, vol. 11(18), pages 1-15, September.
    12. Shi, Zhenfeng & Jiang, Daqing, 2022. "Dynamical behaviors of a stochastic HTLV-I infection model with general infection form and Ornstein–Uhlenbeck process," Chaos, Solitons & Fractals, Elsevier, vol. 165(P2).
    13. Zhou, Baoquan & Jiang, Daqing & Dai, Yucong & Hayat, Tasawar & Alsaedi, Ahmed, 2021. "Stationary distribution and probability density function of a stochastic SVIS epidemic model with standard incidence and vaccination strategies," Chaos, Solitons & Fractals, Elsevier, vol. 143(C).
    14. Han, Bingtao & Jiang, Daqing & Hayat, Tasawar & Alsaedi, Ahmed & Ahmad, Bashir, 2020. "Stationary distribution and extinction of a stochastic staged progression AIDS model with staged treatment and second-order perturbation," Chaos, Solitons & Fractals, Elsevier, vol. 140(C).
    15. Liu, Qun & Jiang, Daqing, 2023. "Stationary distribution and probability density for a stochastic SEIR-type model of coronavirus (COVID-19) with asymptomatic carriers," Chaos, Solitons & Fractals, Elsevier, vol. 169(C).
    16. Zhou, Baoquan & Han, Bingtao & Jiang, Daqing, 2021. "Ergodic property, extinction and density function of a stochastic SIR epidemic model with nonlinear incidence and general stochastic perturbations," Chaos, Solitons & Fractals, Elsevier, vol. 152(C).
    17. Shi, Zhenfeng & Jiang, Daqing & Zhang, Xinhong & Alsaedi, Ahmed, 2022. "A stochastic SEIRS rabies model with population dispersal: Stationary distribution and probability density function," Applied Mathematics and Computation, Elsevier, vol. 427(C).
    18. Alfifi, H.Y., 2021. "Stability and Hopf bifurcation analysis for the diffusive delay logistic population model with spatially heterogeneous environment," Applied Mathematics and Computation, Elsevier, vol. 408(C).
    19. Gao, Miaomiao & Jiang, Daqing & Ding, Jieyu, 2023. "Dynamical behavior of a nutrient–plankton model with Ornstein–Uhlenbeck process and nutrient recycling," Chaos, Solitons & Fractals, Elsevier, vol. 174(C).
    20. Mu, Xiaojie & Jiang, Daqing, 2024. "Dynamics caused by the mean-reverting Ornstein–Uhlenbeck process in a stochastic predator–prey model with stage structure," Chaos, Solitons & Fractals, Elsevier, vol. 179(C).

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:chsofr:v:177:y:2023:i:c:s0960077923011372. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Thayer, Thomas R. (email available below). General contact details of provider: https://www.journals.elsevier.com/chaos-solitons-and-fractals .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.