IDEAS home Printed from https://ideas.repec.org/a/eee/chsofr/v160y2022ics0960077922004581.html
   My bibliography  Save this article

A construction method of N-dimensional non-degenerate discrete memristive hyperchaotic map

Author

Listed:
  • Huang, Lilian
  • Liu, Jin
  • Xiang, Jianhong
  • Zhang, Zefeng
  • Du, Xiuli

Abstract

In this paper, a discrete memristor model with periodic memristive function is proposed, and a construction method of N-dimensional non-degenerate discrete hyperchaotic map based on the new memristors is further proposed. This method only needs simple operation steps to construct a non-degenerate hyperchaotic map with dimension-tunable and the map designed by this method has very concise structure, but this map still has complex dynamic behaviors, such as initial-boosting behaviors, state transition phenomena, large Lyapunov exponent and ultra-wide non-degenerate hyperchaotic parameter range. The construction method proposed has a seed function and by selecting different seed function, the method can construct almost infinite kinds of non-degeneracy hyperchaotic maps in any-dimension. Then we give the structure diagram of any-dimensional map and the mathematical proof for the existence of non-degeneracy hyperchaotic state of N-dimensional simplest maps. We use this method to construct three sub-maps of different dimensions and analyze their dynamic behaviors. We perform a noise robustness verification experiment on the memristor and the map, and analyze the impact of noise on critical states. We also describe the SE complexity and carry out the NIST test to show that the submaps have higher SE complexity and better pseudo-randomness. Finally the sub-maps through DSP hardware platform are implemented and the results are the same with the simulations.

Suggested Citation

  • Huang, Lilian & Liu, Jin & Xiang, Jianhong & Zhang, Zefeng & Du, Xiuli, 2022. "A construction method of N-dimensional non-degenerate discrete memristive hyperchaotic map," Chaos, Solitons & Fractals, Elsevier, vol. 160(C).
  • Handle: RePEc:eee:chsofr:v:160:y:2022:i:c:s0960077922004581
    DOI: 10.1016/j.chaos.2022.112248
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S0960077922004581
    Download Restriction: Full text for ScienceDirect subscribers only

    File URL: https://libkey.io/10.1016/j.chaos.2022.112248?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Guseinov, D.V. & Matyushkin, I.V. & Chernyaev, N.V. & Mikhaylov, A.N. & Pershin, Y.V., 2021. "Capacitive effects can make memristors chaotic," Chaos, Solitons & Fractals, Elsevier, vol. 144(C).
    2. Nosrati, Komeil & Shafiee, Masoud, 2018. "Fractional-order singular logistic map: Stability, bifurcation and chaos analysis," Chaos, Solitons & Fractals, Elsevier, vol. 115(C), pages 224-238.
    3. Mikhaylov, A.N. & Guseinov, D.V. & Belov, A.I. & Korolev, D.S. & Shishmakova, V.A. & Koryazhkina, M.N. & Filatov, D.O. & Gorshkov, O.N. & Maldonado, D. & Alonso, F.J. & Roldán, J.B. & Krichigin, A.V. , 2021. "Stochastic resonance in a metal-oxide memristive device," Chaos, Solitons & Fractals, Elsevier, vol. 144(C).
    4. Deng, Yue & Li, Yuxia, 2021. "Bifurcation and bursting oscillations in 2D non-autonomous discrete memristor-based hyperchaotic map," Chaos, Solitons & Fractals, Elsevier, vol. 150(C).
    5. Hanzhong Zheng & Simin Yu & Xiangqian Xu, 2014. "A Systematic Methodology for Multi-Images Encryption and Decryption Based on Single Chaotic System and FPGA Embedded Implementation," Mathematical Problems in Engineering, Hindawi, vol. 2014, pages 1-15, June.
    6. Surazhevsky, I.A. & Demin, V.A. & Ilyasov, A.I. & Emelyanov, A.V. & Nikiruy, K.E. & Rylkov, V.V. & Shchanikov, S.A. & Bordanov, I.A. & Gerasimova, S.A. & Guseinov, D.V. & Malekhonova, N.V. & Pavlov, D, 2021. "Noise-assisted persistence and recovery of memory state in a memristive spiking neuromorphic network," Chaos, Solitons & Fractals, Elsevier, vol. 146(C).
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Wu, Zihua & Zhang, Yinxing & Bao, Han & Lan, Rushi & Hua, Zhongyun, 2024. "nD-CS: A circularly shifting chaotic map generation method," Chaos, Solitons & Fractals, Elsevier, vol. 181(C).
    2. Yuan, Fang & Xing, Guibin & Deng, Yue, 2023. "Flexible cascade and parallel operations of discrete memristor," Chaos, Solitons & Fractals, Elsevier, vol. 166(C).
    3. Luo, Yuyao & Fan, Chunlei & Xu, Chengbin & Li, Xinyu, 2024. "Design and FPGA implementation of a high-speed PRNG based on an n-D non-degenerate chaotic system," Chaos, Solitons & Fractals, Elsevier, vol. 183(C).
    4. Fan, Chunlei & Ding, Qun, 2023. "Design and geometric control of polynomial chaotic maps with any desired positive Lyapunov exponents," Chaos, Solitons & Fractals, Elsevier, vol. 169(C).
    5. Fan, Zhenyi & Zhang, Chenkai & Wang, Yiming & Du, Baoxiang, 2023. "Construction, dynamic analysis and DSP implementation of a novel 3D discrete memristive hyperchaotic map," Chaos, Solitons & Fractals, Elsevier, vol. 177(C).
    6. Fan, Chunlei & Ding, Qun, 2023. "Constructing n-dimensional discrete non-degenerate hyperchaotic maps using QR decomposition," Chaos, Solitons & Fractals, Elsevier, vol. 174(C).

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Wang, Yang & Li, Huanyun & Guan, Yan & Chen, Mingshu, 2022. "Predefined-time chaos synchronization of memristor chaotic systems by using simplified control inputs," Chaos, Solitons & Fractals, Elsevier, vol. 161(C).
    2. Kim, Tae-Hyeon & Kim, Sungjoon & Hong, Kyungho & Park, Jinwoo & Hwang, Yeongjin & Park, Byung-Gook & Kim, Hyungjin, 2021. "Multilevel switching memristor by compliance current adjustment for off-chip training of neuromorphic system," Chaos, Solitons & Fractals, Elsevier, vol. 153(P2).
    3. Choi, Woo Sik & Jang, Jun Tae & Kim, Donguk & Yang, Tae Jun & Kim, Changwook & Kim, Hyungjin & Kim, Dae Hwan, 2022. "Influence of Al2O3 layer on InGaZnO memristor crossbar array for neuromorphic applications," Chaos, Solitons & Fractals, Elsevier, vol. 156(C).
    4. Jin, Yanfei & Wang, Haotian & Xu, Pengfei, 2023. "Noise-induced enhancement of stability and resonance in a tri-stable system with time-delayed feedback," Chaos, Solitons & Fractals, Elsevier, vol. 168(C).
    5. Ai, Hao & Yang, GuiJiang & Liu, Wei & Wang, Qiubao, 2023. "A fast search method for optimal parameters of stochastic resonance based on stochastic bifurcation and its application in fault diagnosis of rolling bearings," Chaos, Solitons & Fractals, Elsevier, vol. 168(C).
    6. Lin, Lifeng & Lin, Tianzhen & Zhang, Ruoqi & Wang, Huiqi, 2023. "Generalized stochastic resonance in a time-delay fractional oscillator with damping fluctuation and signal-modulated noise," Chaos, Solitons & Fractals, Elsevier, vol. 170(C).
    7. Maldonado, D. & Aguilera-Pedregosa, C. & Vinuesa, G. & García, H. & Dueñas, S. & Castán, H. & Aldana, S. & González, M.B. & Moreno, E. & Jiménez-Molinos, F. & Campabadal, F. & Roldán, J.B., 2022. "An experimental and simulation study of the role of thermal effects on variability in TiN/Ti/HfO2/W resistive switching nonlinear devices," Chaos, Solitons & Fractals, Elsevier, vol. 160(C).
    8. Tan, Yiping & Cai, Yongli & Sun, Xiaodan & Wang, Kai & Yao, Ruoxia & Wang, Weiming & Peng, Zhihang, 2022. "A stochastic SICA model for HIV/AIDS transmission," Chaos, Solitons & Fractals, Elsevier, vol. 165(P1).
    9. Han, Cheng & Wang, Yan & Jiang, Daqing, 2023. "Dynamics analysis of a stochastic HIV model with non-cytolytic cure and Ornstein–Uhlenbeck process," Chaos, Solitons & Fractals, Elsevier, vol. 175(P1).
    10. Zhang, Dongjian & Ma, Qihua & Dong, Hailiang & Liao, He & Liu, Xiangyu & Zha, Yibin & Zhang, Xiaoxiao & Qian, Xiaomin & Liu, Jin & Gan, Xuehui, 2023. "Time-delayed feedback bistable stochastic resonance system and its application in the estimation of the Polyester Filament Yarn tension in the spinning process," Chaos, Solitons & Fractals, Elsevier, vol. 168(C).
    11. Vasileiadis, Nikolaos & Loukas, Panagiotis & Karakolis, Panagiotis & Ioannou-Sougleridis, Vassilios & Normand, Pascal & Ntinas, Vasileios & Fyrigos, Iosif-Angelos & Karafyllidis, Ioannis & Sirakoulis,, 2021. "Multi-level resistance switching and random telegraph noise analysis of nitride based memristors," Chaos, Solitons & Fractals, Elsevier, vol. 153(P1).
    12. Kim, Dahye & Kim, Sunghun & Kim, Sungjun, 2021. "Logic-in-memory application of CMOS compatible silicon nitride memristor," Chaos, Solitons & Fractals, Elsevier, vol. 153(P2).
    13. Chen, Ruyin & Xiong, Yue & Zhuge, Shengying & Li, Zekun & Chen, Qitie & He, Zhifen & Wu, Dingqiang & Hou, Fang & Zhou, Jiawei, 2023. "Regulation and prediction of multistable perception alternation," Chaos, Solitons & Fractals, Elsevier, vol. 172(C).
    14. Ping, Zhu, 2023. "Analytical equivalent transformation method for nonlinear stochastic dynamics with multiple noises in high dimensions," Chaos, Solitons & Fractals, Elsevier, vol. 176(C).
    15. Setoudeh, Farbod & Dezhdar, Mohammad Matin & Najafi, M., 2022. "Nonlinear analysis and chaos synchronization of a memristive-based chaotic system using adaptive control technique in noisy environments," Chaos, Solitons & Fractals, Elsevier, vol. 164(C).
    16. Taheri, Alireza Ghomi & Setoudeh, Farbod & Tavakoli, Mohammad Bagher & Feizi, Esmaeil, 2022. "Nonlinear analysis of memcapacitor-based hyperchaotic oscillator by using adaptive multi-step differential transform method," Chaos, Solitons & Fractals, Elsevier, vol. 159(C).
    17. Setoudeh, Farbod & Dousti, Massoud, 2022. "Analysis and implementation of a meminductor-based colpitts sinusoidal oscillator," Chaos, Solitons & Fractals, Elsevier, vol. 156(C).
    18. Mahata, Chandreswar & Kim, Sungjun, 2021. "Electrical and optical artificial synapses properties of TiN-nanoparticles incorporated HfAlO-alloy based memristor," Chaos, Solitons & Fractals, Elsevier, vol. 153(P1).
    19. Ryu, Hojeong & Kim, Sungjun, 2021. "Implementation of a reservoir computing system using the short-term effects of Pt/HfO2/TaOx/TiN memristors with self-rectification," Chaos, Solitons & Fractals, Elsevier, vol. 150(C).
    20. Parshina, Liubov & Novodvorsky, Oleg & Khramova, Olga & Gusev, Dmitriy & Polyakov, Alexander & Cherebilo, Elena, 2022. "Tuning the resistive switching in tantalum oxide-based memristors by oxygen pressure during low temperature laser synthesis," Chaos, Solitons & Fractals, Elsevier, vol. 161(C).

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:chsofr:v:160:y:2022:i:c:s0960077922004581. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Thayer, Thomas R. (email available below). General contact details of provider: https://www.journals.elsevier.com/chaos-solitons-and-fractals .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.