IDEAS home Printed from https://ideas.repec.org/a/eee/chsofr/v144y2021ics096007792100076x.html
   My bibliography  Save this article

Stochastic resonance in a metal-oxide memristive device

Author

Listed:
  • Mikhaylov, A.N.
  • Guseinov, D.V.
  • Belov, A.I.
  • Korolev, D.S.
  • Shishmakova, V.A.
  • Koryazhkina, M.N.
  • Filatov, D.O.
  • Gorshkov, O.N.
  • Maldonado, D.
  • Alonso, F.J.
  • Roldán, J.B.
  • Krichigin, A.V.
  • Agudov, N.V.
  • Dubkov, A.A.
  • Carollo, A.
  • Spagnolo, B.

Abstract

The stochastic resonance phenomenon has been studied experimentally and theoretically for a state-of-art metal-oxide memristive device based on yttria-stabilized zirconium dioxide and tantalum pentoxide, which exhibits bipolar filamentary resistive switching of anionic type. The effect of white Gaussian noise superimposed on the sub-threshold sinusoidal driving signal is analyzed through the time series statistics of the resistive switching parameters, the spectral response to a periodic perturbation and the signal-to-noise ratio at the output of the nonlinear system. The stabilized resistive switching and the increased memristance response are revealed in the observed regularities at an optimal noise intensity corresponding to the stochastic resonance phenomenon and interpreted using a stochastic memristor model taking into account an external noise source added to the control voltage. The obtained results clearly show that noise and fluctuations can play a constructive role in nonlinear memristive systems far from equilibrium.

Suggested Citation

  • Mikhaylov, A.N. & Guseinov, D.V. & Belov, A.I. & Korolev, D.S. & Shishmakova, V.A. & Koryazhkina, M.N. & Filatov, D.O. & Gorshkov, O.N. & Maldonado, D. & Alonso, F.J. & Roldán, J.B. & Krichigin, A.V. , 2021. "Stochastic resonance in a metal-oxide memristive device," Chaos, Solitons & Fractals, Elsevier, vol. 144(C).
  • Handle: RePEc:eee:chsofr:v:144:y:2021:i:c:s096007792100076x
    DOI: 10.1016/j.chaos.2021.110723
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S096007792100076X
    Download Restriction: Full text for ScienceDirect subscribers only

    File URL: https://libkey.io/10.1016/j.chaos.2021.110723?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Spagnolo, B. & Valenti, D. & Guarcello, C. & Carollo, A. & Persano Adorno, D. & Spezia, S. & Pizzolato, N. & Di Paola, B., 2015. "Noise-induced effects in nonlinear relaxation of condensed matter systems," Chaos, Solitons & Fractals, Elsevier, vol. 81(PB), pages 412-424.
    2. A. Dubkov & B. Spagnolo, 2008. "Verhulst model with Lévy white noise excitation," The European Physical Journal B: Condensed Matter and Complex Systems, Springer;EDP Sciences, vol. 65(3), pages 361-367, October.
    3. Bernardo Spagnolo & Davide Valenti, 2008. "Volatility Effects on the Escape Time in Financial Market Models," Papers 0810.1625, arXiv.org.
    4. B. Spagnolo & A. Dubkov & N. Agudov, 2004. "Enhancement of stability in randomly switching potential with metastable state," The European Physical Journal B: Condensed Matter and Complex Systems, Springer;EDP Sciences, vol. 40(3), pages 273-281, August.
    5. E. L. Pankratov & B. Spagnolo, 2005. "Optimization of impurity profile for p-n-junction in heterostructures," The European Physical Journal B: Condensed Matter and Complex Systems, Springer;EDP Sciences, vol. 46(1), pages 15-19, July.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Surazhevsky, I.A. & Demin, V.A. & Ilyasov, A.I. & Emelyanov, A.V. & Nikiruy, K.E. & Rylkov, V.V. & Shchanikov, S.A. & Bordanov, I.A. & Gerasimova, S.A. & Guseinov, D.V. & Malekhonova, N.V. & Pavlov, D, 2021. "Noise-assisted persistence and recovery of memory state in a memristive spiking neuromorphic network," Chaos, Solitons & Fractals, Elsevier, vol. 146(C).
    2. Agudov, N.V. & Dubkov, A.A. & Safonov, A.V. & Krichigin, A.V. & Kharcheva, A.A. & Guseinov, D.V. & Koryazhkina, M.N. & Novikov, A.S. & Shishmakova, V.A. & Antonov, I.N. & Carollo, A. & Spagnolo, B., 2021. "Stochastic model of memristor based on the length of conductive region," Chaos, Solitons & Fractals, Elsevier, vol. 150(C).
    3. Duan, Wei-Long & Lin, Ling, 2021. "Noise and delay enhanced stability in tumor-immune responses to chemotherapy system," Chaos, Solitons & Fractals, Elsevier, vol. 148(C).
    4. Du, Chuanhong & Liu, Licai & Zhang, Zhengping & Yu, Shixing, 2021. "Double memristors oscillator with hidden stacked attractors and its multi-transient and multistability analysis," Chaos, Solitons & Fractals, Elsevier, vol. 148(C).
    5. Yakimov, Arkady V. & Filatov, Dmitry O. & Gorshkov, Oleg N. & Klyuev, Alexey V. & Shtraub, Nikolay I. & Kochergin, Viktor S. & Spagnolo, Bernardo, 2021. "Influence of oxygen ion elementary diffusion jumps on the electron current through the conductive filament in yttria stabilized zirconia nanometer-sized memristor," Chaos, Solitons & Fractals, Elsevier, vol. 148(C).
    6. Choi, Woo Sik & Jang, Jun Tae & Kim, Donguk & Yang, Tae Jun & Kim, Changwook & Kim, Hyungjin & Kim, Dae Hwan, 2022. "Influence of Al2O3 layer on InGaZnO memristor crossbar array for neuromorphic applications," Chaos, Solitons & Fractals, Elsevier, vol. 156(C).
    7. Alsuwian, Turki & Kousar, Farhana & Rasheed, Umbreen & Imran, Muhammad & Hussain, Fayyaz & Arif Khalil, R.M. & Algadi, Hassan & Batool, Najaf & Khera, Ejaz Ahmad & Kiran, Saira & Ashiq, Muhammad Naeem, 2021. "First principles investigation of physically conductive bridge filament formation of aluminum doped perovskite materials for neuromorphic memristive applications," Chaos, Solitons & Fractals, Elsevier, vol. 150(C).
    8. Kim, Dahye & Kim, Sunghun & Kim, Sungjun, 2021. "Logic-in-memory application of CMOS compatible silicon nitride memristor," Chaos, Solitons & Fractals, Elsevier, vol. 153(P2).
    9. Song, Yi & Xu, Wei, 2021. "Asymmetric Lévy noise changed stability in a gene transcriptional regulatory system," Chaos, Solitons & Fractals, Elsevier, vol. 151(C).
    10. Setoudeh, Farbod & Dezhdar, Mohammad Matin & Najafi, M., 2022. "Nonlinear analysis and chaos synchronization of a memristive-based chaotic system using adaptive control technique in noisy environments," Chaos, Solitons & Fractals, Elsevier, vol. 164(C).
    11. Yablokov, A.A. & Glushkov, E.I. & Pankratov, A.L. & Gordeeva, A.V. & Kuzmin, L.S. & Il’ichev, E.V., 2021. "Resonant response drives sensitivity of Josephson escape detector," Chaos, Solitons & Fractals, Elsevier, vol. 148(C).
    12. dos Santos, Maike A.F. & Junior, Luiz Menon, 2021. "Random diffusivity models for scaled Brownian motion," Chaos, Solitons & Fractals, Elsevier, vol. 144(C).
    13. Taheri, Alireza Ghomi & Setoudeh, Farbod & Tavakoli, Mohammad Bagher & Feizi, Esmaeil, 2022. "Nonlinear analysis of memcapacitor-based hyperchaotic oscillator by using adaptive multi-step differential transform method," Chaos, Solitons & Fractals, Elsevier, vol. 159(C).
    14. Setoudeh, Farbod & Dousti, Massoud, 2022. "Analysis and implementation of a meminductor-based colpitts sinusoidal oscillator," Chaos, Solitons & Fractals, Elsevier, vol. 156(C).
    15. Setoudeh, F. & Sedigh, A. Khaki, 2021. "Nonlinear analysis and minimum L2-norm control in memcapacitor-based hyperchaotic system via online particle swarm optimization," Chaos, Solitons & Fractals, Elsevier, vol. 151(C).
    16. Mahata, Chandreswar & Kim, Sungjun, 2021. "Electrical and optical artificial synapses properties of TiN-nanoparticles incorporated HfAlO-alloy based memristor," Chaos, Solitons & Fractals, Elsevier, vol. 153(P1).
    17. Ryu, Hojeong & Kim, Sungjun, 2021. "Implementation of a reservoir computing system using the short-term effects of Pt/HfO2/TaOx/TiN memristors with self-rectification," Chaos, Solitons & Fractals, Elsevier, vol. 150(C).
    18. Park, Jinwoo & Kim, Tae-Hyeon & Kim, Sungjoon & Lee, Geun Ho & Nili, Hussein & Kim, Hyungjin, 2021. "Conduction mechanism effect on physical unclonable function using Al2O3/TiOX memristors," Chaos, Solitons & Fractals, Elsevier, vol. 152(C).
    19. Han, Ping & Wang, Liang & Xu, Wei & Zhang, Hongxia & Ren, Zhicong, 2021. "The stochastic P-bifurcation analysis of the impact system via the most probable response," Chaos, Solitons & Fractals, Elsevier, vol. 144(C).
    20. Liu, Jian & Qiao, Zijian & Ding, Xiaojian & Hu, Bing & Zang, Chuanlai, 2021. "Stochastic resonance induced weak signal enhancement over controllable potential-well asymmetry," Chaos, Solitons & Fractals, Elsevier, vol. 146(C).

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:chsofr:v:144:y:2021:i:c:s096007792100076x. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Thayer, Thomas R. (email available below). General contact details of provider: https://www.journals.elsevier.com/chaos-solitons-and-fractals .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.