IDEAS home Printed from https://ideas.repec.org/a/eee/chsofr/v170y2023ics0960077923003077.html
   My bibliography  Save this article

Generalized stochastic resonance in a time-delay fractional oscillator with damping fluctuation and signal-modulated noise

Author

Listed:
  • Lin, Lifeng
  • Lin, Tianzhen
  • Zhang, Ruoqi
  • Wang, Huiqi

Abstract

In this study, we propose a time-delayed fractional oscillator (FO) subjected to damping fluctuation and signal-modulated noise, and investigate the generalized stochastic resonance (GSR) behaviors. By using (fractional) Shapiro–Loginov formula and Laplace transform, we obtain the first-order moment of system stationary state response, and the output amplitude gain (OAG). Based on the analytical results, it is observed that the GSR behaviors widely exist in the system, and they can be effectively controlled by the system parameters, including driving frequency, noise parameters, fractional order and time delay. It is also demonstrated that fractional order and time delay are two effective dimensions to regulate the GSR intensity under different parameter conditions, and the diversity of GSR behaviors mainly depends on the fractional order.

Suggested Citation

  • Lin, Lifeng & Lin, Tianzhen & Zhang, Ruoqi & Wang, Huiqi, 2023. "Generalized stochastic resonance in a time-delay fractional oscillator with damping fluctuation and signal-modulated noise," Chaos, Solitons & Fractals, Elsevier, vol. 170(C).
  • Handle: RePEc:eee:chsofr:v:170:y:2023:i:c:s0960077923003077
    DOI: 10.1016/j.chaos.2023.113406
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S0960077923003077
    Download Restriction: Full text for ScienceDirect subscribers only

    File URL: https://libkey.io/10.1016/j.chaos.2023.113406?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. D. Valenti & G. Augello & B. Spagnolo, 2008. "Dynamics of a FitzHugh-Nagumo system subjected to autocorrelated noise," The European Physical Journal B: Condensed Matter and Complex Systems, Springer;EDP Sciences, vol. 65(3), pages 443-451, October.
    2. G. Bonanno & D. Valenti & B. Spagnolo, 2006. "Role of noise in a market model with stochastic volatility," The European Physical Journal B: Condensed Matter and Complex Systems, Springer;EDP Sciences, vol. 53(3), pages 405-409, October.
    3. Guo, Feng & Zhu, Cheng-Yin & Cheng, Xiao-Feng & Li, Heng, 2016. "Stochastic resonance in a fractional harmonic oscillator subject to random mass and signal-modulated noise," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 459(C), pages 86-91.
    4. Lin, Lifeng & He, Minyue & Wang, Huiqi, 2022. "Collective resonant behaviors in two coupled fluctuating-mass oscillators with tempered Mittag-Leffler memory kernel," Chaos, Solitons & Fractals, Elsevier, vol. 154(C).
    5. Gitterman, M., 2005. "Classical harmonic oscillator with multiplicative noise," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 352(2), pages 309-334.
    6. Lin, Lifeng & Wang, Huiqi & Ma, Hong, 2019. "Directed transport properties of double-headed molecular motors with balanced cargo," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 517(C), pages 270-279.
    7. Gitterman, M., 2014. "Stochastic oscillator with random mass: New type of Brownian motion," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 395(C), pages 11-21.
    8. Mikhaylov, A.N. & Guseinov, D.V. & Belov, A.I. & Korolev, D.S. & Shishmakova, V.A. & Koryazhkina, M.N. & Filatov, D.O. & Gorshkov, O.N. & Maldonado, D. & Alonso, F.J. & Roldán, J.B. & Krichigin, A.V. , 2021. "Stochastic resonance in a metal-oxide memristive device," Chaos, Solitons & Fractals, Elsevier, vol. 144(C).
    9. Tian, Yan & He, Guitian & Liu, Zhibin & Zhong, Linfeng & Yang, Xinping & Stanley, H. Eugene & Tu, Zhe, 2021. "The impact of memory effect on resonance behavior in a fractional oscillator with small time delay," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 563(C).
    10. Shapiro, V.E. & Loginov, V.M., 1978. "“Formulae of differentiation” and their use for solving stochastic equations," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 91(3), pages 563-574.
    11. You, Pinlong & Lin, Lifeng & Wang, Huiqi, 2020. "Cooperative mechanism of generalized stochastic resonance in a time-delayed fractional oscillator with random fluctuations on both mass and damping," Chaos, Solitons & Fractals, Elsevier, vol. 135(C).
    12. Surazhevsky, I.A. & Demin, V.A. & Ilyasov, A.I. & Emelyanov, A.V. & Nikiruy, K.E. & Rylkov, V.V. & Shchanikov, S.A. & Bordanov, I.A. & Gerasimova, S.A. & Guseinov, D.V. & Malekhonova, N.V. & Pavlov, D, 2021. "Noise-assisted persistence and recovery of memory state in a memristive spiking neuromorphic network," Chaos, Solitons & Fractals, Elsevier, vol. 146(C).
    13. G. Bonanno & D. Valenti & B. Spagnolo, 2005. "Role of Noise in a Market Model with Stochastic Volatility," Papers cond-mat/0510154, arXiv.org, revised Oct 2006.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Wang, Huanan & Huang, Chengdai & Liu, Heng & Cao, Jinde, 2023. "Detecting bifurcations in a fractional-order neural network with nonidentical delays via Cramer’s rule," Chaos, Solitons & Fractals, Elsevier, vol. 175(P1).
    2. Li, Ruihong & Li, Xingxin & Gan, Qintao & Wu, Huaiqin & Cao, Jinde, 2023. "Finite time event-triggered consensus of variable-order fractional multi-agent systems," Chaos, Solitons & Fractals, Elsevier, vol. 174(C).

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Jin, Yanfei & Wang, Haotian & Xu, Pengfei, 2023. "Noise-induced enhancement of stability and resonance in a tri-stable system with time-delayed feedback," Chaos, Solitons & Fractals, Elsevier, vol. 168(C).
    2. Lin, Lifeng & He, Minyue & Wang, Huiqi, 2022. "Collective resonant behaviors in two coupled fluctuating-mass oscillators with tempered Mittag-Leffler memory kernel," Chaos, Solitons & Fractals, Elsevier, vol. 154(C).
    3. Han, Cheng & Wang, Yan & Jiang, Daqing, 2023. "Dynamics analysis of a stochastic HIV model with non-cytolytic cure and Ornstein–Uhlenbeck process," Chaos, Solitons & Fractals, Elsevier, vol. 175(P1).
    4. Ping, Zhu, 2023. "Analytical equivalent transformation method for nonlinear stochastic dynamics with multiple noises in high dimensions," Chaos, Solitons & Fractals, Elsevier, vol. 176(C).
    5. Mi, Li-Na & Guo, Yong-Feng & Zhang, Meng & Zhuo, Xiao-Jing, 2023. "Stochastic resonance in gene transcriptional regulatory system driven by Gaussian noise and Lévy noise," Chaos, Solitons & Fractals, Elsevier, vol. 167(C).
    6. Ai, Hao & Yang, GuiJiang & Liu, Wei & Wang, Qiubao, 2023. "A fast search method for optimal parameters of stochastic resonance based on stochastic bifurcation and its application in fault diagnosis of rolling bearings," Chaos, Solitons & Fractals, Elsevier, vol. 168(C).
    7. Zhang, Ruoqi & Meng, Lin & Yu, Lei & Shi, Sihong & Wang, Huiqi, 2024. "Collective dynamics of fluctuating–damping coupled oscillators in network structures: Stability, synchronism, and resonant behaviors," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 638(C).
    8. He, Lifang & Wu, Xia & Zhang, Gang, 2020. "Stochastic resonance in coupled fractional-order linear harmonic oscillators with damping fluctuation," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 545(C).
    9. Zhang, Dongjian & Ma, Qihua & Dong, Hailiang & Liao, He & Liu, Xiangyu & Zha, Yibin & Zhang, Xiaoxiao & Qian, Xiaomin & Liu, Jin & Gan, Xuehui, 2023. "Time-delayed feedback bistable stochastic resonance system and its application in the estimation of the Polyester Filament Yarn tension in the spinning process," Chaos, Solitons & Fractals, Elsevier, vol. 168(C).
    10. Chen, Ruyin & Xiong, Yue & Zhuge, Shengying & Li, Zekun & Chen, Qitie & He, Zhifen & Wu, Dingqiang & Hou, Fang & Zhou, Jiawei, 2023. "Regulation and prediction of multistable perception alternation," Chaos, Solitons & Fractals, Elsevier, vol. 172(C).
    11. Rao, Feng & Kang, Yun, 2023. "Dynamics of a stochastic prey–predator system with prey refuge, predation fear and its carry-over effects," Chaos, Solitons & Fractals, Elsevier, vol. 175(P1).
    12. Mondal, Chirodeep & Kesh, Dipak & Mukherjee, Debasis, 2023. "Global stability and bifurcation analysis of an infochemical induced three species discrete-time phytoplankton–zooplankton model," Chaos, Solitons & Fractals, Elsevier, vol. 176(C).
    13. Tian, Yan & Yu, Tao & He, Gui-Tian & Zhong, Lin-Feng & Stanley, H. Eugene, 2020. "The resonance behavior in the fractional harmonic oscillator with time delay and fluctuating mass," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 545(C).
    14. Gao, Chenghua & Qiao, Shuai & An, Xinlei, 2022. "Global multistability and mechanisms of a memristive autapse-based Filippov Hindmash-Rose neuron model," Chaos, Solitons & Fractals, Elsevier, vol. 160(C).
    15. Yonkeu, R. Mbakob, 2023. "Stochastic bifurcations induced by Lévy noise in a fractional trirhythmic van der Pol system," Chaos, Solitons & Fractals, Elsevier, vol. 172(C).
    16. Yu, Xingwang & Ma, Yuanlin, 2023. "Noise-induced bistability and noise-enhanced stability of a stochastic model for resource production–consumption under crowding effect and sigmoidal consumption pattern," Chaos, Solitons & Fractals, Elsevier, vol. 176(C).
    17. Kim, Tae-Hyeon & Kim, Sungjoon & Hong, Kyungho & Park, Jinwoo & Hwang, Yeongjin & Park, Byung-Gook & Kim, Hyungjin, 2021. "Multilevel switching memristor by compliance current adjustment for off-chip training of neuromorphic system," Chaos, Solitons & Fractals, Elsevier, vol. 153(P2).
    18. Choi, Woo Sik & Jang, Jun Tae & Kim, Donguk & Yang, Tae Jun & Kim, Changwook & Kim, Hyungjin & Kim, Dae Hwan, 2022. "Influence of Al2O3 layer on InGaZnO memristor crossbar array for neuromorphic applications," Chaos, Solitons & Fractals, Elsevier, vol. 156(C).
    19. Koo, Eunho & Kim, Geonwoo, 2017. "Explicit formula for the valuation of catastrophe put option with exponential jump and default risk," Chaos, Solitons & Fractals, Elsevier, vol. 101(C), pages 1-7.
    20. Li, Jiang-Cheng & Tao, Chen & Li, Hai-Feng, 2022. "Dynamic forecasting performance and liquidity evaluation of financial market by Econophysics and Bayesian methods," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 588(C).

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:chsofr:v:170:y:2023:i:c:s0960077923003077. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Thayer, Thomas R. (email available below). General contact details of provider: https://www.journals.elsevier.com/chaos-solitons-and-fractals .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.