IDEAS home Printed from https://ideas.repec.org/a/eee/chsofr/v172y2023ics0960077923004654.html
   My bibliography  Save this article

Regulation and prediction of multistable perception alternation

Author

Listed:
  • Chen, Ruyin
  • Xiong, Yue
  • Zhuge, Shengying
  • Li, Zekun
  • Chen, Qitie
  • He, Zhifen
  • Wu, Dingqiang
  • Hou, Fang
  • Zhou, Jiawei

Abstract

Here, we investigated effects of noises (additive and multiplicative noises) and time delay on perceptual tristability model consisting of two rivalry perceptions interleaved with a fused one. Our numerical results revealed that the noises and time delay have both been shown to play crucial roles in dynamics of multistable perception. In detail, the noises are beneficial to induce perceptual resonance, and the time delay is able to enhance perceptual stability. Moreover, they are capable of regulating alternation patterns between rivalry and fusion, particularly a bias toward the rivalry pattern, and making choice of next perception be predictable. The multistable perception alternation modulated by the noises and time delay of the binocular perception was studied as well. Except for the above dynamics behaviors, noise enhance stability and perceptual imbalance phenomena were also observed, and regulated by the binocular modulation. These findings have the significant implication for a deeper understanding of regulation and prediction of multistable perception alternation.

Suggested Citation

  • Chen, Ruyin & Xiong, Yue & Zhuge, Shengying & Li, Zekun & Chen, Qitie & He, Zhifen & Wu, Dingqiang & Hou, Fang & Zhou, Jiawei, 2023. "Regulation and prediction of multistable perception alternation," Chaos, Solitons & Fractals, Elsevier, vol. 172(C).
  • Handle: RePEc:eee:chsofr:v:172:y:2023:i:c:s0960077923004654
    DOI: 10.1016/j.chaos.2023.113564
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S0960077923004654
    Download Restriction: Full text for ScienceDirect subscribers only

    File URL: https://libkey.io/10.1016/j.chaos.2023.113564?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Spagnolo, B. & Valenti, D. & Guarcello, C. & Carollo, A. & Persano Adorno, D. & Spezia, S. & Pizzolato, N. & Di Paola, B., 2015. "Noise-induced effects in nonlinear relaxation of condensed matter systems," Chaos, Solitons & Fractals, Elsevier, vol. 81(PB), pages 412-424.
    2. Chen, Ruyin & Xiong, Yue & Li, Zekun & He, Zhifen & Hou, Fang & Zhou, Jiawei, 2022. "Effects of correlated noises on binocular rivalry," Chaos, Solitons & Fractals, Elsevier, vol. 159(C).
    3. D. Valenti & G. Augello & B. Spagnolo, 2008. "Dynamics of a FitzHugh-Nagumo system subjected to autocorrelated noise," The European Physical Journal B: Condensed Matter and Complex Systems, Springer;EDP Sciences, vol. 65(3), pages 443-451, October.
    4. Mikhaylov, A.N. & Guseinov, D.V. & Belov, A.I. & Korolev, D.S. & Shishmakova, V.A. & Koryazhkina, M.N. & Filatov, D.O. & Gorshkov, O.N. & Maldonado, D. & Alonso, F.J. & Roldán, J.B. & Krichigin, A.V. , 2021. "Stochastic resonance in a metal-oxide memristive device," Chaos, Solitons & Fractals, Elsevier, vol. 144(C).
    5. Surazhevsky, I.A. & Demin, V.A. & Ilyasov, A.I. & Emelyanov, A.V. & Nikiruy, K.E. & Rylkov, V.V. & Shchanikov, S.A. & Bordanov, I.A. & Gerasimova, S.A. & Guseinov, D.V. & Malekhonova, N.V. & Pavlov, D, 2021. "Noise-assisted persistence and recovery of memory state in a memristive spiking neuromorphic network," Chaos, Solitons & Fractals, Elsevier, vol. 146(C).
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Wu, Guoyuan & Peng, Dongbo & Boriboonsomsin, Kanok, 2024. "Developing an Efficient Dispatching Strategy to Support Commercial Fleet Electrification," Institute of Transportation Studies, Working Paper Series qt2qz0n2gv, Institute of Transportation Studies, UC Davis.
    2. Ivan S. Maksymov, 2024. "Quantum Mechanics of Human Perception, Behaviour and Decision-Making: A Do-It-Yourself Model Kit for Modelling Optical Illusions and Opinion Formation in Social Networks," Papers 2404.10554, arXiv.org.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Jin, Yanfei & Wang, Haotian & Xu, Pengfei, 2023. "Noise-induced enhancement of stability and resonance in a tri-stable system with time-delayed feedback," Chaos, Solitons & Fractals, Elsevier, vol. 168(C).
    2. Ai, Hao & Yang, GuiJiang & Liu, Wei & Wang, Qiubao, 2023. "A fast search method for optimal parameters of stochastic resonance based on stochastic bifurcation and its application in fault diagnosis of rolling bearings," Chaos, Solitons & Fractals, Elsevier, vol. 168(C).
    3. Lin, Lifeng & Lin, Tianzhen & Zhang, Ruoqi & Wang, Huiqi, 2023. "Generalized stochastic resonance in a time-delay fractional oscillator with damping fluctuation and signal-modulated noise," Chaos, Solitons & Fractals, Elsevier, vol. 170(C).
    4. Zhang, Dongjian & Ma, Qihua & Dong, Hailiang & Liao, He & Liu, Xiangyu & Zha, Yibin & Zhang, Xiaoxiao & Qian, Xiaomin & Liu, Jin & Gan, Xuehui, 2023. "Time-delayed feedback bistable stochastic resonance system and its application in the estimation of the Polyester Filament Yarn tension in the spinning process," Chaos, Solitons & Fractals, Elsevier, vol. 168(C).
    5. Parshina, Liubov & Novodvorsky, Oleg & Khramova, Olga & Gusev, Dmitriy & Polyakov, Alexander & Cherebilo, Elena, 2022. "Tuning the resistive switching in tantalum oxide-based memristors by oxygen pressure during low temperature laser synthesis," Chaos, Solitons & Fractals, Elsevier, vol. 161(C).
    6. Gao, Chenghua & Qiao, Shuai & An, Xinlei, 2022. "Global multistability and mechanisms of a memristive autapse-based Filippov Hindmash-Rose neuron model," Chaos, Solitons & Fractals, Elsevier, vol. 160(C).
    7. Yonkeu, R. Mbakob, 2023. "Stochastic bifurcations induced by Lévy noise in a fractional trirhythmic van der Pol system," Chaos, Solitons & Fractals, Elsevier, vol. 172(C).
    8. Kim, Tae-Hyeon & Kim, Sungjoon & Hong, Kyungho & Park, Jinwoo & Hwang, Yeongjin & Park, Byung-Gook & Kim, Hyungjin, 2021. "Multilevel switching memristor by compliance current adjustment for off-chip training of neuromorphic system," Chaos, Solitons & Fractals, Elsevier, vol. 153(P2).
    9. Choi, Woo Sik & Jang, Jun Tae & Kim, Donguk & Yang, Tae Jun & Kim, Changwook & Kim, Hyungjin & Kim, Dae Hwan, 2022. "Influence of Al2O3 layer on InGaZnO memristor crossbar array for neuromorphic applications," Chaos, Solitons & Fractals, Elsevier, vol. 156(C).
    10. Maldonado, D. & Aguilera-Pedregosa, C. & Vinuesa, G. & García, H. & Dueñas, S. & Castán, H. & Aldana, S. & González, M.B. & Moreno, E. & Jiménez-Molinos, F. & Campabadal, F. & Roldán, J.B., 2022. "An experimental and simulation study of the role of thermal effects on variability in TiN/Ti/HfO2/W resistive switching nonlinear devices," Chaos, Solitons & Fractals, Elsevier, vol. 160(C).
    11. Tan, Yiping & Cai, Yongli & Sun, Xiaodan & Wang, Kai & Yao, Ruoxia & Wang, Weiming & Peng, Zhihang, 2022. "A stochastic SICA model for HIV/AIDS transmission," Chaos, Solitons & Fractals, Elsevier, vol. 165(P1).
    12. Dai, Shiqi & Lu, Lulu & Wei, Zhouchao & Zhu, Yuan & Yi, Ming, 2022. "Influence of temperature and noise on the propagation of subthreshold signal in feedforward neural network," Chaos, Solitons & Fractals, Elsevier, vol. 164(C).
    13. Han, Cheng & Wang, Yan & Jiang, Daqing, 2023. "Dynamics analysis of a stochastic HIV model with non-cytolytic cure and Ornstein–Uhlenbeck process," Chaos, Solitons & Fractals, Elsevier, vol. 175(P1).
    14. Ladeynov, D.A. & Egorov, D.G. & Pankratov, A.L., 2023. "Stochastic versus dynamic resonant activation to enhance threshold detector sensitivity," Chaos, Solitons & Fractals, Elsevier, vol. 171(C).
    15. Vasileiadis, Nikolaos & Loukas, Panagiotis & Karakolis, Panagiotis & Ioannou-Sougleridis, Vassilios & Normand, Pascal & Ntinas, Vasileios & Fyrigos, Iosif-Angelos & Karafyllidis, Ioannis & Sirakoulis,, 2021. "Multi-level resistance switching and random telegraph noise analysis of nitride based memristors," Chaos, Solitons & Fractals, Elsevier, vol. 153(P1).
    16. Kim, Dahye & Kim, Sunghun & Kim, Sungjun, 2021. "Logic-in-memory application of CMOS compatible silicon nitride memristor," Chaos, Solitons & Fractals, Elsevier, vol. 153(P2).
    17. Wang, Yang & Li, Huanyun & Guan, Yan & Chen, Mingshu, 2022. "Predefined-time chaos synchronization of memristor chaotic systems by using simplified control inputs," Chaos, Solitons & Fractals, Elsevier, vol. 161(C).
    18. Slepukhina, Evdokia & Bashkirtseva, Irina & Ryashko, Lev, 2020. "Stochastic spiking-bursting transitions in a neural birhythmic 3D model with the Lukyanov-Shilnikov bifurcation," Chaos, Solitons & Fractals, Elsevier, vol. 138(C).
    19. Huang, Lilian & Liu, Jin & Xiang, Jianhong & Zhang, Zefeng & Du, Xiuli, 2022. "A construction method of N-dimensional non-degenerate discrete memristive hyperchaotic map," Chaos, Solitons & Fractals, Elsevier, vol. 160(C).
    20. Ping, Zhu, 2023. "Analytical equivalent transformation method for nonlinear stochastic dynamics with multiple noises in high dimensions," Chaos, Solitons & Fractals, Elsevier, vol. 176(C).

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:chsofr:v:172:y:2023:i:c:s0960077923004654. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Thayer, Thomas R. (email available below). General contact details of provider: https://www.journals.elsevier.com/chaos-solitons-and-fractals .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.