IDEAS home Printed from https://ideas.repec.org/a/eee/chsofr/v174y2023ics0960077923008160.html
   My bibliography  Save this article

Constructing n-dimensional discrete non-degenerate hyperchaotic maps using QR decomposition

Author

Listed:
  • Fan, Chunlei
  • Ding, Qun

Abstract

Lyapunov exponents (LEs) characterize the average exponential rate of convergence or divergence between adjacent orbits in phase space. Thus, the number of positive LEs can reflect the complexity of chaotic systems from a certain point of view. To resist the dynamic degradation of digital chaos, we propose a novel universal method that is based on QR decomposition for constructing non-degenerate hyperchaotic maps. A large number of positive LEs can be generated to increase the complexity of chaotic systems. Furthermore, we construct a 4-D discrete non-degenerate hyperchaotic map as an example to demonstrate the adaptability and efficacy of the proposed scheme. For the proposed method, the related control parameters can not only effectively adjust Lyapunov exponents, but also carry out chaotic regulation on the discrete map, such as amplitude control and offset boosting. In addition, a pseudorandom number generator (PRNG) is designed with desirable statistical properties. Then, a microcontroller-based platform was developed to implement the proposed chaotic map. This study is interesting and has a potential for real-world applications, such as secure communication and cryptography.

Suggested Citation

  • Fan, Chunlei & Ding, Qun, 2023. "Constructing n-dimensional discrete non-degenerate hyperchaotic maps using QR decomposition," Chaos, Solitons & Fractals, Elsevier, vol. 174(C).
  • Handle: RePEc:eee:chsofr:v:174:y:2023:i:c:s0960077923008160
    DOI: 10.1016/j.chaos.2023.113915
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S0960077923008160
    Download Restriction: Full text for ScienceDirect subscribers only

    File URL: https://libkey.io/10.1016/j.chaos.2023.113915?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Valle, João & Machicao, Jeaneth & Bruno, Odemir M., 2022. "Chaotical PRNG based on composition of logistic and tent maps using deep-zoom," Chaos, Solitons & Fractals, Elsevier, vol. 161(C).
    2. Natiq, Hayder & Banerjee, Santo & He, Shaobo & Said, M.R.M. & Kilicman, Adem, 2018. "Designing an M-dimensional nonlinear model for producing hyperchaos," Chaos, Solitons & Fractals, Elsevier, vol. 114(C), pages 506-515.
    3. Zheng, Jun & Hu, Hanping, 2022. "Bit cyclic shift method to reinforce digital chaotic maps and its application in pseudorandom number generator," Applied Mathematics and Computation, Elsevier, vol. 420(C).
    4. Fan, Chunlei & Ding, Qun, 2022. "A universal method for constructing non-degenerate hyperchaotic systems with any desired number of positive Lyapunov exponents," Chaos, Solitons & Fractals, Elsevier, vol. 161(C).
    5. Nardo, Lucas G. & Nepomuceno, Erivelton G. & Arias-Garcia, Janier & Butusov, Denis N., 2019. "Image encryption using finite-precision error," Chaos, Solitons & Fractals, Elsevier, vol. 123(C), pages 69-78.
    6. Huang, Lilian & Liu, Jin & Xiang, Jianhong & Zhang, Zefeng & Du, Xiuli, 2022. "A construction method of N-dimensional non-degenerate discrete memristive hyperchaotic map," Chaos, Solitons & Fractals, Elsevier, vol. 160(C).
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Luo, Yuyao & Fan, Chunlei & Xu, Chengbin & Li, Xinyu, 2024. "Design and FPGA implementation of a high-speed PRNG based on an n-D non-degenerate chaotic system," Chaos, Solitons & Fractals, Elsevier, vol. 183(C).
    2. Li, Binglun & Sun, Kehui & Wang, Huihai & Liu, Wenhao, 2024. "A delay-disturbance method to counteract the dynamical degradation of digital chaotic systems and its application," Chaos, Solitons & Fractals, Elsevier, vol. 182(C).

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Wu, Zihua & Zhang, Yinxing & Bao, Han & Lan, Rushi & Hua, Zhongyun, 2024. "nD-CS: A circularly shifting chaotic map generation method," Chaos, Solitons & Fractals, Elsevier, vol. 181(C).
    2. Fan, Chunlei & Ding, Qun, 2023. "Design and geometric control of polynomial chaotic maps with any desired positive Lyapunov exponents," Chaos, Solitons & Fractals, Elsevier, vol. 169(C).
    3. Bowen Zhang & Lingfeng Liu, 2023. "Chaos-Based Image Encryption: Review, Application, and Challenges," Mathematics, MDPI, vol. 11(11), pages 1-39, June.
    4. Shaista Mansoor & Parsa Sarosh & Shabir A. Parah & Habib Ullah & Mohammad Hijji & Khan Muhammad, 2022. "Adaptive Color Image Encryption Scheme Based on Multiple Distinct Chaotic Maps and DNA Computing," Mathematics, MDPI, vol. 10(12), pages 1-20, June.
    5. Seyhan, Özlem & Aslan, Nisa & Saltan, Mustafa, 2024. "Dynamical analysis of some special shift maps on discrete Sierpinski triangle," Chaos, Solitons & Fractals, Elsevier, vol. 178(C).
    6. Ding, Dawei & Wang, Wei & Yang, Zongli & Hu, Yongbing & Wang, Jin & Wang, Mouyuan & Niu, Yan & Zhu, Haifei, 2023. "An n-dimensional modulo chaotic system with expected Lyapunov exponents and its application in image encryption," Chaos, Solitons & Fractals, Elsevier, vol. 174(C).
    7. Kamal, F.M. & Elsonbaty, A. & Elsaid, A., 2021. "A novel fractional nonautonomous chaotic circuit model and its application to image encryption," Chaos, Solitons & Fractals, Elsevier, vol. 144(C).
    8. Yuan, Fang & Xing, Guibin & Deng, Yue, 2023. "Flexible cascade and parallel operations of discrete memristor," Chaos, Solitons & Fractals, Elsevier, vol. 166(C).
    9. Trujillo-Toledo, D.A. & López-Bonilla, O.R. & García-Guerrero, E.E. & Tlelo-Cuautle, E. & López-Mancilla, D. & Guillén-Fernández, O. & Inzunza-González, E., 2021. "Real-time RGB image encryption for IoT applications using enhanced sequences from chaotic maps," Chaos, Solitons & Fractals, Elsevier, vol. 153(P2).
    10. Ali Kanso & Mohammad Ghebleh & Mazen Bou Khuzam, 2022. "A Probabilistic Chaotic Image Encryption Scheme," Mathematics, MDPI, vol. 10(11), pages 1-26, June.
    11. Natiq, Hayder & Banerjee, Santo & Misra, A.P. & Said, M.R.M., 2019. "Degenerating the butterfly attractor in a plasma perturbation model using nonlinear controllers," Chaos, Solitons & Fractals, Elsevier, vol. 122(C), pages 58-68.
    12. García-Grimaldo, Claudio & Campos-Cantón, Eric, 2023. "Exploring a family of Bernoulli-like shift chaotic maps and its amplitude control," Chaos, Solitons & Fractals, Elsevier, vol. 175(P1).
    13. Zhang, Sen & Zheng, Jiahao & Wang, Xiaoping & Zeng, Zhigang, 2021. "A novel no-equilibrium HR neuron model with hidden homogeneous extreme multistability," Chaos, Solitons & Fractals, Elsevier, vol. 145(C).
    14. Huiyan Zhong & Guodong Li & Xiangliang Xu & Xiaoming Song, 2022. "Image Encryption Algorithm Based on a Novel Wide-Range Discrete Hyperchaotic Map," Mathematics, MDPI, vol. 10(15), pages 1-23, July.
    15. Luo, Yuyao & Fan, Chunlei & Xu, Chengbin & Li, Xinyu, 2024. "Design and FPGA implementation of a high-speed PRNG based on an n-D non-degenerate chaotic system," Chaos, Solitons & Fractals, Elsevier, vol. 183(C).
    16. Man, Zhenlong & Li, Jinqing & Di, Xiaoqiang & Sheng, Yaohui & Liu, Zefei, 2021. "Double image encryption algorithm based on neural network and chaos," Chaos, Solitons & Fractals, Elsevier, vol. 152(C).
    17. Surendar, R. & Muthtamilselvan, M. & Ahn, Kyubok, 2024. "Stochastic disturbance with finite-time chaos stabilization and synchronization for a fractional-order nonautonomous hybrid nonlinear complex system via a sliding mode control," Chaos, Solitons & Fractals, Elsevier, vol. 181(C).
    18. Wang, Xingyuan & Yang, Jingjing & Guan, Nana, 2021. "High-sensitivity image encryption algorithm with random cross diffusion based on dynamically random coupled map lattice model," Chaos, Solitons & Fractals, Elsevier, vol. 143(C).
    19. García-Guerrero, E.E. & Inzunza-González, E. & López-Bonilla, O.R. & Cárdenas-Valdez, J.R. & Tlelo-Cuautle, E., 2020. "Randomness improvement of chaotic maps for image encryption in a wireless communication scheme using PIC-microcontroller via Zigbee channels," Chaos, Solitons & Fractals, Elsevier, vol. 133(C).
    20. Jaishree Jain & Arpit Jain & Saurabh Kumar Srivastava & Chaman Verma & Maria Simona Raboaca & Zoltán Illés, 2022. "Improved Security of E-Healthcare Images Using Hybridized Robust Zero-Watermarking and Hyper-Chaotic System along with RSA," Mathematics, MDPI, vol. 10(7), pages 1-16, March.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:chsofr:v:174:y:2023:i:c:s0960077923008160. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Thayer, Thomas R. (email available below). General contact details of provider: https://www.journals.elsevier.com/chaos-solitons-and-fractals .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.