IDEAS home Printed from https://ideas.repec.org/a/eee/chsofr/v162y2022ics0960077922006373.html
   My bibliography  Save this article

Assessing the impact of SARS-CoV-2 infection on the dynamics of dengue and HIV via fractional derivatives

Author

Listed:
  • Omame, Andrew
  • Abbas, Mujahid
  • Abdel-Aty, Abdel-Haleem

Abstract

A new non-integer order mathematical model for SARS-CoV-2, Dengue and HIV co-dynamics is designed and studied. The impact of SARS-CoV-2 infection on the dynamics of dengue and HIV is analyzed using the tools of fractional calculus. The existence and uniqueness of solution of the proposed model are established employing well known Banach contraction principle. The Ulam-Hyers and generalized Ulam-Hyers stability of the model is also presented. We have applied the Laplace Adomian decomposition method to investigate the model with the help of three different fractional derivatives, namely: Caputo, Caputo-Fabrizio and Atangana-Baleanu derivatives. Stability analyses of the iterative schemes are also performed. The model fitting using the three fractional derivatives was carried out using real data from Argentina. Simulations were performed with each non-integer derivative and the results thus obtained are compared. Furthermore, it was concluded that efforts to keep the spread of SARS-CoV-2 low will have a significant impact in reducing the co-infections of SARS-CoV-2 and dengue or SARS-COV-2 and HIV. We also highlighted the impact of three different fractional derivatives in analyzing complex models dealing with the co-dynamics of different diseases.

Suggested Citation

  • Omame, Andrew & Abbas, Mujahid & Abdel-Aty, Abdel-Haleem, 2022. "Assessing the impact of SARS-CoV-2 infection on the dynamics of dengue and HIV via fractional derivatives," Chaos, Solitons & Fractals, Elsevier, vol. 162(C).
  • Handle: RePEc:eee:chsofr:v:162:y:2022:i:c:s0960077922006373
    DOI: 10.1016/j.chaos.2022.112427
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S0960077922006373
    Download Restriction: Full text for ScienceDirect subscribers only

    File URL: https://libkey.io/10.1016/j.chaos.2022.112427?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Shaikh, Amjad S. & Sooppy Nisar, Kottakkaran, 2019. "Transmission dynamics of fractional order Typhoid fever model using Caputo–Fabrizio operator," Chaos, Solitons & Fractals, Elsevier, vol. 128(C), pages 355-365.
    2. Baleanu, Dumitru & Jajarmi, Amin & Mohammadi, Hakimeh & Rezapour, Shahram, 2020. "A new study on the mathematical modelling of human liver with Caputo–Fabrizio fractional derivative," Chaos, Solitons & Fractals, Elsevier, vol. 134(C).
    3. Mansal, Fulgence & Sene, Ndolane, 2020. "Analysis of fractional fishery model with reserve area in the context of time-fractional order derivative," Chaos, Solitons & Fractals, Elsevier, vol. 140(C).
    4. Gao, Fei & Li, Xiling & Li, Wenqin & Zhou, Xianjin, 2021. "Stability analysis of a fractional-order novel hepatitis B virus model with immune delay based on Caputo-Fabrizio derivative," Chaos, Solitons & Fractals, Elsevier, vol. 142(C).
    5. Asamoah, Joshua Kiddy K. & Okyere, Eric & Yankson, Ernest & Opoku, Alex Akwasi & Adom-Konadu, Agnes & Acheampong, Edward & Arthur, Yarhands Dissou, 2022. "Non-fractional and fractional mathematical analysis and simulations for Q fever," Chaos, Solitons & Fractals, Elsevier, vol. 156(C).
    6. Omame, A. & Abbas, M. & Onyenegecha, C.P., 2021. "A fractional-order model for COVID-19 and tuberculosis co-infection using Atangana–Baleanu derivative," Chaos, Solitons & Fractals, Elsevier, vol. 153(P1).
    7. Sene, Ndolane, 2020. "SIR epidemic model with Mittag–Leffler fractional derivative," Chaos, Solitons & Fractals, Elsevier, vol. 137(C).
    8. Rahman, Mati ur & Ahmad, Saeed & Matoog, R.T. & Alshehri, Nawal A. & Khan, Tahir, 2021. "Study on the mathematical modelling of COVID-19 with Caputo-Fabrizio operator," Chaos, Solitons & Fractals, Elsevier, vol. 150(C).
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Ahmed M. Elaiw & Abdulsalam S. Shflot & Aatef D. Hobiny & Shaban A. Aly, 2023. "Global Dynamics of an HTLV-I and SARS-CoV-2 Co-Infection Model with Diffusion," Mathematics, MDPI, vol. 11(3), pages 1-33, January.
    2. Omame, Andrew & Abbas, Mujahid, 2023. "Modeling SARS-CoV-2 and HBV co-dynamics with optimal control," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 615(C).
    3. Ahmed M. Elaiw & Abdulsalam S. Shflot & Aatef D. Hobiny, 2022. "Global Stability of Delayed SARS-CoV-2 and HTLV-I Coinfection Models within a Host," Mathematics, MDPI, vol. 10(24), pages 1-35, December.
    4. Ahmed M. Elaiw & Raghad S. Alsulami & Aatef D. Hobiny, 2022. "Modeling and Stability Analysis of Within-Host IAV/SARS-CoV-2 Coinfection with Antibody Immunity," Mathematics, MDPI, vol. 10(22), pages 1-36, November.
    5. Zehba Raizah & Rahat Zarin, 2023. "Advancing COVID-19 Understanding: Simulating Omicron Variant Spread Using Fractional-Order Models and Haar Wavelet Collocation," Mathematics, MDPI, vol. 11(8), pages 1-30, April.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Addai, Emmanuel & Zhang, Lingling & Ackora-Prah, Joseph & Gordon, Joseph Frank & Asamoah, Joshua Kiddy K. & Essel, John Fiifi, 2022. "Fractal-fractional order dynamics and numerical simulations of a Zika epidemic model with insecticide-treated nets," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 603(C).
    2. Ghanbari, Behzad, 2021. "On detecting chaos in a prey-predator model with prey’s counter-attack on juvenile predators," Chaos, Solitons & Fractals, Elsevier, vol. 150(C).
    3. Oscar Martínez-Fuentes & Fidel Meléndez-Vázquez & Guillermo Fernández-Anaya & José Francisco Gómez-Aguilar, 2021. "Analysis of Fractional-Order Nonlinear Dynamic Systems with General Analytic Kernels: Lyapunov Stability and Inequalities," Mathematics, MDPI, vol. 9(17), pages 1-29, August.
    4. Abdullahi, Auwal, 2021. "Modelling of transmission and control of Lassa fever via Caputo fractional-order derivative," Chaos, Solitons & Fractals, Elsevier, vol. 151(C).
    5. Gao, Fei & Li, Xiling & Li, Wenqin & Zhou, Xianjin, 2021. "Stability analysis of a fractional-order novel hepatitis B virus model with immune delay based on Caputo-Fabrizio derivative," Chaos, Solitons & Fractals, Elsevier, vol. 142(C).
    6. Kumar, Sunil & Chauhan, R.P. & Momani, Shaher & Hadid, Samir, 2021. "A study of fractional TB model due to mycobacterium tuberculosis bacteria," Chaos, Solitons & Fractals, Elsevier, vol. 153(P2).
    7. Kritika, & Agarwal, Ritu & Purohit, Sunil Dutt, 2020. "Mathematical model for anomalous subdiffusion using comformable operator," Chaos, Solitons & Fractals, Elsevier, vol. 140(C).
    8. Ullah, Ihsan & Ahmad, Saeed & Rahman, Mati ur & Arfan, Muhammad, 2021. "Investigation of fractional order tuberculosis (TB) model via Caputo derivative," Chaos, Solitons & Fractals, Elsevier, vol. 142(C).
    9. Asamoah, Joshua Kiddy K. & Owusu, Mark A. & Jin, Zhen & Oduro, F. T. & Abidemi, Afeez & Gyasi, Esther Opoku, 2020. "Global stability and cost-effectiveness analysis of COVID-19 considering the impact of the environment: using data from Ghana," Chaos, Solitons & Fractals, Elsevier, vol. 140(C).
    10. Hussain, Ghulam & Khan, Amir & Zahri, Mostafa & Zaman, Gul, 2022. "Ergodic stationary distribution of stochastic epidemic model for HBV with double saturated incidence rates and vaccination," Chaos, Solitons & Fractals, Elsevier, vol. 160(C).
    11. Hoang, Manh Tuan, 2022. "Reliable approximations for a hepatitis B virus model by nonstandard numerical schemes," Mathematics and Computers in Simulation (MATCOM), Elsevier, vol. 193(C), pages 32-56.
    12. Alam, Mehboob & Zada, Akbar, 2022. "Implementation of q-calculus on q-integro-differential equation involving anti-periodic boundary conditions with three criteria," Chaos, Solitons & Fractals, Elsevier, vol. 154(C).
    13. Liaqat, Muhammad Imran & Akgül, Ali, 2022. "A novel approach for solving linear and nonlinear time-fractional Schrödinger equations," Chaos, Solitons & Fractals, Elsevier, vol. 162(C).
    14. Yahya Almalki & Waqar Afzal, 2023. "Some New Estimates of Hermite–Hadamard Inequalities for Harmonical cr - h -Convex Functions via Generalized Fractional Integral Operator on Set-Valued Mappings," Mathematics, MDPI, vol. 11(19), pages 1-21, September.
    15. Hari Mohan Srivastava & Khaled M. Saad, 2020. "A Comparative Study of the Fractional-Order Clock Chemical Model," Mathematics, MDPI, vol. 8(9), pages 1-14, August.
    16. Omame, Andrew & Abbas, Mujahid & Din, Anwarud, 2023. "Global asymptotic stability, extinction and ergodic stationary distribution in a stochastic model for dual variants of SARS-CoV-2," Mathematics and Computers in Simulation (MATCOM), Elsevier, vol. 204(C), pages 302-336.
    17. Li, Peiluan & Gao, Rong & Xu, Changjin & Ahmad, Shabir & Li, Ying & Akgül, Ali, 2023. "Bifurcation behavior and PDγ control mechanism of a fractional delayed genetic regulatory model," Chaos, Solitons & Fractals, Elsevier, vol. 168(C).
    18. Chaudhary, Naveed Ishtiaq & Raja, Muhammad Asif Zahoor & Khan, Zeshan Aslam & Mehmood, Ammara & Shah, Syed Muslim, 2022. "Design of fractional hierarchical gradient descent algorithm for parameter estimation of nonlinear control autoregressive systems," Chaos, Solitons & Fractals, Elsevier, vol. 157(C).
    19. Junseok Kim, 2024. "Influence of Fractional Order on the Behavior of a Normalized Time-Fractional SIR Model," Mathematics, MDPI, vol. 12(19), pages 1-9, October.
    20. Alina Alb Lupaş, 2021. "Applications of the Fractional Calculus in Fuzzy Differential Subordinations and Superordinations," Mathematics, MDPI, vol. 9(20), pages 1-10, October.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:chsofr:v:162:y:2022:i:c:s0960077922006373. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Thayer, Thomas R. (email available below). General contact details of provider: https://www.journals.elsevier.com/chaos-solitons-and-fractals .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.