IDEAS home Printed from https://ideas.repec.org/a/eee/matcom/v225y2024icp939-967.html
   My bibliography  Save this article

Qualitative analysis of TB transmission dynamics considering both the age since latency and relapse

Author

Listed:
  • Das, Riya
  • Das, Dhiraj Kumar
  • Kar, Tapan Kumar

Abstract

Since the beginning of time, tuberculosis (TB) has been a fatal illness that predominantly affects the human lungs before spreading to other organs including the brain, spine, etc. The main elements of TB mitigation are age-dependent heterogeneity, identifying those who are latently infected, and treating them using the right diagnostic strategy. In this present work, the complex transmission mechanism of this disease in a population is described by a coupled system of integro-partial differential equations (IDE-PDE). The system’s well-posedness requirement is confirmed. The proposed system’s basic reproduction number (R0) is obtained. This work provides a complete analysis of the qualitative properties of the model, including steady state existence, asymptotic smoothness of the solution semi-flow, uniform persistence of the endemic equilibrium, and the global asymptotic stability criterion. It is observed that in assessing the severity of the pandemic, the value of R0 is crucial. Additionally, the stability results are visually illustrated by solving the model equations numerically while assuming two hypothetical cases. The current work also suggests several methods for reducing the value of the basic reproductive number (R0) by manipulating a few parameter values, which may help to lessen the prevalence of TB in a community.

Suggested Citation

  • Das, Riya & Das, Dhiraj Kumar & Kar, Tapan Kumar, 2024. "Qualitative analysis of TB transmission dynamics considering both the age since latency and relapse," Mathematics and Computers in Simulation (MATCOM), Elsevier, vol. 225(C), pages 939-967.
  • Handle: RePEc:eee:matcom:v:225:y:2024:i:c:p:939-967
    DOI: 10.1016/j.matcom.2023.09.021
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S0378475423004214
    Download Restriction: Full text for ScienceDirect subscribers only

    File URL: https://libkey.io/10.1016/j.matcom.2023.09.021?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Bentout, Soufiane & Djilali, Salih, 2023. "Asymptotic profiles of a nonlocal dispersal SIR epidemic model with treat-age in a heterogeneous environment," Mathematics and Computers in Simulation (MATCOM), Elsevier, vol. 203(C), pages 926-956.
    2. Li, Yingke & Teng, Zhidong & Hu, Cheng & Ge, Qing, 2017. "Global stability of an epidemic model with age-dependent vaccination, latent and relapse," Chaos, Solitons & Fractals, Elsevier, vol. 105(C), pages 195-207.
    3. Das, Dhiraj Kumar & Khajanchi, Subhas & Kar, T.K., 2020. "The impact of the media awareness and optimal strategy on the prevalence of tuberculosis," Applied Mathematics and Computation, Elsevier, vol. 366(C).
    4. Das, Dhiraj Kumar & Khajanchi, Subhas & Kar, T.K., 2020. "Transmission dynamics of tuberculosis with multiple re-infections," Chaos, Solitons & Fractals, Elsevier, vol. 130(C).
    5. Khajanchi, Subhas & Das, Dhiraj Kumar & Kar, Tapan Kumar, 2018. "Dynamics of tuberculosis transmission with exogenous reinfections and endogenous reactivation," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 497(C), pages 52-71.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Asamoah, Joshua Kiddy K. & Okyere, Eric & Yankson, Ernest & Opoku, Alex Akwasi & Adom-Konadu, Agnes & Acheampong, Edward & Arthur, Yarhands Dissou, 2022. "Non-fractional and fractional mathematical analysis and simulations for Q fever," Chaos, Solitons & Fractals, Elsevier, vol. 156(C).
    2. Liu, Tongtao & Zhang, Yongping, 2024. "Tracking problem of the Julia set for the SIS model with saturated treatment function under noise," Chaos, Solitons & Fractals, Elsevier, vol. 186(C).
    3. Das, Dhiraj Kumar & Kar, T.K., 2021. "Global dynamics of a tuberculosis model with sensitivity of the smear microscopy," Chaos, Solitons & Fractals, Elsevier, vol. 146(C).
    4. Bera, Sovan & Khajanchi, Subhas & Roy, Tapan Kumar, 2022. "Dynamics of an HTLV-I infection model with delayed CTLs immune response," Applied Mathematics and Computation, Elsevier, vol. 430(C).
    5. Huang, Song & Liu, Zhijun & Wang, Lianwen, 2024. "Backward bifurcation and optimal control problem for a tuberculosis model incorporating LTBI detectivity and exogenous reinfection," Mathematics and Computers in Simulation (MATCOM), Elsevier, vol. 225(C), pages 1104-1123.
    6. Khajanchi, Subhas & Bera, Sovan & Roy, Tapan Kumar, 2021. "Mathematical analysis of the global dynamics of a HTLV-I infection model, considering the role of cytotoxic T-lymphocytes," Mathematics and Computers in Simulation (MATCOM), Elsevier, vol. 180(C), pages 354-378.
    7. Chen, Yi & Wang, Lianwen & Zhang, Jinhui, 2024. "Global asymptotic stability of an age-structured tuberculosis model: An analytical method to determine kernel coefficients in Lyapunov functional," Chaos, Solitons & Fractals, Elsevier, vol. 181(C).
    8. Bandekar, Shraddha Ramdas & Ghosh, Mini, 2022. "A co-infection model on TB - COVID-19 with optimal control and sensitivity analysis," Mathematics and Computers in Simulation (MATCOM), Elsevier, vol. 200(C), pages 1-31.
    9. Sarkar, Kankan & Khajanchi, Subhas & Nieto, Juan J., 2020. "Modeling and forecasting the COVID-19 pandemic in India," Chaos, Solitons & Fractals, Elsevier, vol. 139(C).
    10. Fatima Sulayman & Farah Aini Abdullah & Mohd Hafiz Mohd, 2021. "An SVEIRE Model of Tuberculosis to Assess the Effect of an Imperfect Vaccine and Other Exogenous Factors," Mathematics, MDPI, vol. 9(4), pages 1-23, February.
    11. Giovanni Dieguez & Cristiane Batistela & José R. C. Piqueira, 2023. "Controlling COVID-19 Spreading: A Three-Level Algorithm," Mathematics, MDPI, vol. 11(17), pages 1-39, September.
    12. Majee, Suvankar & Jana, Soovoojeet & Das, Dhiraj Kumar & Kar, T.K., 2022. "Global dynamics of a fractional-order HFMD model incorporating optimal treatment and stochastic stability," Chaos, Solitons & Fractals, Elsevier, vol. 161(C).
    13. Juang, Jonq & Liang, Yu-Hao, 2024. "Epidemic models in well-mixed multiplex networks with distributed time delay," Applied Mathematics and Computation, Elsevier, vol. 474(C).
    14. Matthias Klumpp & Dominic Loske & Silvio Bicciato, 2022. "COVID-19 health policy evaluation: integrating health and economic perspectives with a data envelopment analysis approach," The European Journal of Health Economics, Springer;Deutsche Gesellschaft für Gesundheitsökonomie (DGGÖ), vol. 23(8), pages 1263-1285, November.
    15. Qiuyun Li & Fengna Wang, 2023. "An Epidemiological Model for Tuberculosis Considering Environmental Transmission and Reinfection," Mathematics, MDPI, vol. 11(11), pages 1-17, May.
    16. Sun, Dandan & Teng, Zhidong & Wang, Kai & Zhang, Tailei, 2023. "Stability and Hopf bifurcation in delayed age-structured SVIR epidemic model with vaccination and incubation," Chaos, Solitons & Fractals, Elsevier, vol. 168(C).
    17. Noor Alkhateeb & Farag Sallabi & Saad Harous & Mamoun Awad, 2022. "A Study on Predicting the Outbreak of COVID-19 in the United Arab Emirates: A Monte Carlo Simulation Approach," Mathematics, MDPI, vol. 10(23), pages 1-17, November.
    18. Ran, Xue & Hu, Lin & Nie, Lin-Fei & Teng, Zhidong, 2021. "Effects of stochastic perturbation and vaccinated age on a vector-borne epidemic model with saturation incidence rate," Applied Mathematics and Computation, Elsevier, vol. 394(C).
    19. Kumar Das, Dhiraj & Khatua, Anupam & Kar, T.K. & Jana, Soovoojeet, 2021. "The effectiveness of contact tracing in mitigating COVID-19 outbreak: A model-based analysis in the context of India," Applied Mathematics and Computation, Elsevier, vol. 404(C).
    20. Samui, Piu & Mondal, Jayanta & Khajanchi, Subhas, 2020. "A mathematical model for COVID-19 transmission dynamics with a case study of India," Chaos, Solitons & Fractals, Elsevier, vol. 140(C).

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:matcom:v:225:y:2024:i:c:p:939-967. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.journals.elsevier.com/mathematics-and-computers-in-simulation/ .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.