IDEAS home Printed from https://ideas.repec.org/a/eee/chsofr/v152y2021ics096007792100672x.html
   My bibliography  Save this article

Double image encryption algorithm based on neural network and chaos

Author

Listed:
  • Man, Zhenlong
  • Li, Jinqing
  • Di, Xiaoqiang
  • Sheng, Yaohui
  • Liu, Zefei

Abstract

To realize the secure transmission of double images, this paper proposes a double image encryption algorithm based on convolutional neural network (CNN) and dynamic adaptive diffusion. This scheme is different from the existing double image encryption technology. According to the characteristics of digital image, we design a dual-channel (digital channel / optical channel) encryption method, which not only ensures the security of double image, but also improves the encryption efficiency and reduces the possibility of being attacked. First, a chaotic map is used to control the initial values of the 5D conservative chaotic system to enhance the security of the key. Secondary, in order to effectively resist known-plaintext attack and chosen-plaintext attack, we employ a chaotic sequence as convolution kernel of convolution neural network to generate plaintext related chaotic pointer to control the scrambling operation of two images. On this basis, a novel image fusion method is designed, which splits and fuses two images into two different parts according to the amount of information contained. In addition, a dual-channel image encryption scheme, optical encryption channel and digital encryption channel, is designed for the two parts after fusion. The former has better parallelism and higher encryption efficiency, while the latter has higher computational complexity and better encryption reliability. Especially in the digital encryption channel, a new dynamic adaptive diffusion method is designed, which is more flexible and secure than the existing encryption algorithm. Finally, numerical simulation and experimental analysis verify the feasibility and effectiveness of the scheme.

Suggested Citation

  • Man, Zhenlong & Li, Jinqing & Di, Xiaoqiang & Sheng, Yaohui & Liu, Zefei, 2021. "Double image encryption algorithm based on neural network and chaos," Chaos, Solitons & Fractals, Elsevier, vol. 152(C).
  • Handle: RePEc:eee:chsofr:v:152:y:2021:i:c:s096007792100672x
    DOI: 10.1016/j.chaos.2021.111318
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S096007792100672X
    Download Restriction: Full text for ScienceDirect subscribers only

    File URL: https://libkey.io/10.1016/j.chaos.2021.111318?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Zhou, Shuang & Wang, Xingyuan & Wang, Mingxu & Zhang, Yingqian, 2020. "Simple colour image cryptosystem with very high level of security," Chaos, Solitons & Fractals, Elsevier, vol. 141(C).
    2. Wang, Xingyuan & Yang, Jingjing & Guan, Nana, 2021. "High-sensitivity image encryption algorithm with random cross diffusion based on dynamically random coupled map lattice model," Chaos, Solitons & Fractals, Elsevier, vol. 143(C).
    3. Wang, Xingyuan & Li, Yanpei & Jin, Jie, 2020. "A new one-dimensional chaotic system with applications in image encryption," Chaos, Solitons & Fractals, Elsevier, vol. 139(C).
    4. Wang, Xingyuan & Chen, Xuan, 2021. "An image encryption algorithm based on dynamic row scrambling and Zigzag transformation," Chaos, Solitons & Fractals, Elsevier, vol. 147(C).
    5. Wang, Xingyuan & Xue, Wenhua & An, Jubai, 2020. "Image encryption algorithm based on Tent-Dynamics coupled map lattices and diffusion of Household," Chaos, Solitons & Fractals, Elsevier, vol. 141(C).
    6. Nardo, Lucas G. & Nepomuceno, Erivelton G. & Arias-Garcia, Janier & Butusov, Denis N., 2019. "Image encryption using finite-precision error," Chaos, Solitons & Fractals, Elsevier, vol. 123(C), pages 69-78.
    7. Ibrahim Yasser & Fahmi Khalifa & Mohamed A. Mohamed & Ahmed S. Samrah, 2020. "A New Image Encryption Scheme Based on Hybrid Chaotic Maps," Complexity, Hindawi, vol. 2020, pages 1-23, July.
    8. Wang, Mingxu & Wang, Xingyuan & Wang, Chunpeng & Xia, Zhiqiu & Zhao, Hongyu & Gao, Suo & Zhou, Shuang & Yao, Nianmin, 2020. "Spatiotemporal chaos in cross coupled map lattice with dynamic coupling coefficient and its application in bit-level color image encryption," Chaos, Solitons & Fractals, Elsevier, vol. 139(C).
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Lu, Yang & Gong, Mengxin & Gan, Zhihua & Chai, Xiuli & Cao, Lvchen & Wang, Binjie, 2023. "Exploiting one-dimensional improved Chebyshev chaotic system and partitioned diffusion based on the divide-and-conquer principle for 3D medical model encryption," Chaos, Solitons & Fractals, Elsevier, vol. 171(C).
    2. Cang, Shijian & Wang, Luo & Zhang, Yapeng & Wang, Zenghui & Chen, Zengqiang, 2022. "Bifurcation and chaos in a smooth 3D dynamical system extended from Nosé-Hoover oscillator," Chaos, Solitons & Fractals, Elsevier, vol. 158(C).
    3. Man, Zhenlong, 2023. "Biometric information security based on double chaotic rotating diffusion," Chaos, Solitons & Fractals, Elsevier, vol. 172(C).
    4. Bowen Zhang & Lingfeng Liu, 2023. "Chaos-Based Image Encryption: Review, Application, and Challenges," Mathematics, MDPI, vol. 11(11), pages 1-39, June.
    5. Pai Liu & Shihua Zhou & Wei Qi Yan, 2022. "A 3D Cuboid Image Encryption Algorithm Based on Controlled Alternate Quantum Walk of Message Coding," Mathematics, MDPI, vol. 10(23), pages 1-26, November.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Yan, Minxiu & Jie, Jingfeng, 2022. "Fractional-order multiwing switchable chaotic system with a wide range of parameters," Chaos, Solitons & Fractals, Elsevier, vol. 160(C).
    2. Wu, Rui & Gao, Suo & Wang, Xingyuan & Liu, Songbo & Li, Qi & Erkan, Uğur & Tang, Xianglong, 2022. "AEA-NCS: An audio encryption algorithm based on a nested chaotic system," Chaos, Solitons & Fractals, Elsevier, vol. 165(P1).
    3. Liu, Xilin & Tong, Xiaojun & Wang, Zhu & Zhang, Miao, 2022. "A new n-dimensional conservative chaos based on Generalized Hamiltonian System and its’ applications in image encryption," Chaos, Solitons & Fractals, Elsevier, vol. 154(C).
    4. Trujillo-Toledo, D.A. & López-Bonilla, O.R. & García-Guerrero, E.E. & Tlelo-Cuautle, E. & López-Mancilla, D. & Guillén-Fernández, O. & Inzunza-González, E., 2021. "Real-time RGB image encryption for IoT applications using enhanced sequences from chaotic maps," Chaos, Solitons & Fractals, Elsevier, vol. 153(P2).
    5. Wei Feng & Xiangyu Zhao & Jing Zhang & Zhentao Qin & Junkun Zhang & Yigang He, 2022. "Image Encryption Algorithm Based on Plane-Level Image Filtering and Discrete Logarithmic Transform," Mathematics, MDPI, vol. 10(15), pages 1-24, August.
    6. Yang, Xiaofang & Lu, Tianxiu & Waseem, Anwar, 2021. "Chaotic properties of a class of coupled mapping lattice induced by fuzzy mapping in non-autonomous discrete systems," Chaos, Solitons & Fractals, Elsevier, vol. 148(C).
    7. Zhou, Shuang & Zhao, Zhipeng & Wang, Xingyuan, 2022. "Novel chaotic colour image cryptosystem with deep learning," Chaos, Solitons & Fractals, Elsevier, vol. 161(C).
    8. Omar Guillén-Fernández & Esteban Tlelo-Cuautle & Luis Gerardo de la Fraga & Yuma Sandoval-Ibarra & Jose-Cruz Nuñez-Perez, 2022. "An Image Encryption Scheme Synchronizing Optimized Chaotic Systems Implemented on Raspberry Pis," Mathematics, MDPI, vol. 10(11), pages 1-23, June.
    9. Folifack Signing, V.R. & Gakam Tegue, G.A. & Kountchou, M. & Njitacke, Z.T. & Tsafack, N. & Nkapkop, J.D.D. & Lessouga Etoundi, C.M. & Kengne, J., 2022. "A cryptosystem based on a chameleon chaotic system and dynamic DNA coding," Chaos, Solitons & Fractals, Elsevier, vol. 155(C).
    10. Wang, Xingyuan & Chen, Xuan, 2021. "An image encryption algorithm based on dynamic row scrambling and Zigzag transformation," Chaos, Solitons & Fractals, Elsevier, vol. 147(C).
    11. Fan, Chunlei & Ding, Qun, 2023. "Constructing n-dimensional discrete non-degenerate hyperchaotic maps using QR decomposition," Chaos, Solitons & Fractals, Elsevier, vol. 174(C).
    12. Gao, Ya-jun & Xie, Hong-wei & Zhang, Jun & Zhang, Hao, 2022. "A novel quantum image encryption technique based on improved controlled alternated quantum walks and hyperchaotic system," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 598(C).
    13. Wang, Xingyuan & Yang, Jingjing & Guan, Nana, 2021. "High-sensitivity image encryption algorithm with random cross diffusion based on dynamically random coupled map lattice model," Chaos, Solitons & Fractals, Elsevier, vol. 143(C).
    14. Zou, Chengye & Wang, Xingyuan & Zhou, Changjun & Xu, Shujuan & Huang, Chun, 2022. "A novel image encryption algorithm based on DNA strand exchange and diffusion," Applied Mathematics and Computation, Elsevier, vol. 430(C).
    15. Sun, Jing-yu & Wang, Wan-ting & Zhang, Hao & Zhang, Jun, 2023. "Color image quantum steganography scheme and circuit design based on DWT+DCT+SVD," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 617(C).
    16. Yan, Shaohui & Jiang, Defeng & Cui, Yu & Zhang, Hanbing & Li, Lin & Jiang, Jiawei, 2024. "A fractional-order hyperchaotic system that is period in integer-order case and its application in a novel high-quality color image encryption algorithm," Chaos, Solitons & Fractals, Elsevier, vol. 182(C).
    17. Zhu, Wanting & Sun, Kehui & He, Shaobo & Wang, Huihai & Liu, Wenhao, 2023. "A class of m-dimension grid multi-cavity hyperchaotic maps and its application," Chaos, Solitons & Fractals, Elsevier, vol. 170(C).
    18. Bowen Zhang & Lingfeng Liu, 2023. "Chaos-Based Image Encryption: Review, Application, and Challenges," Mathematics, MDPI, vol. 11(11), pages 1-39, June.
    19. García-Guerrero, E.E. & Inzunza-González, E. & López-Bonilla, O.R. & Cárdenas-Valdez, J.R. & Tlelo-Cuautle, E., 2020. "Randomness improvement of chaotic maps for image encryption in a wireless communication scheme using PIC-microcontroller via Zigbee channels," Chaos, Solitons & Fractals, Elsevier, vol. 133(C).
    20. Shaista Mansoor & Parsa Sarosh & Shabir A. Parah & Habib Ullah & Mohammad Hijji & Khan Muhammad, 2022. "Adaptive Color Image Encryption Scheme Based on Multiple Distinct Chaotic Maps and DNA Computing," Mathematics, MDPI, vol. 10(12), pages 1-20, June.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:chsofr:v:152:y:2021:i:c:s096007792100672x. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Thayer, Thomas R. (email available below). General contact details of provider: https://www.journals.elsevier.com/chaos-solitons-and-fractals .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.