IDEAS home Printed from https://ideas.repec.org/a/eee/chsofr/v165y2022ip1s0960077922009493.html
   My bibliography  Save this article

AEA-NCS: An audio encryption algorithm based on a nested chaotic system

Author

Listed:
  • Wu, Rui
  • Gao, Suo
  • Wang, Xingyuan
  • Liu, Songbo
  • Li, Qi
  • Erkan, Uğur
  • Tang, Xianglong

Abstract

Audio information strongly correlates in adjacent times, and the data type of the audio is float, so the traditional encryption algorithms for the image are unsuitable for audio encryption. This paper proposes an audio encryption algorithm based on Chaos, named AEA-NCS. Most 1D maps have a control parameter, and the parameter space in the chaotic state is small. Therefore, a 2D-Logistic-nested-infinite-collapse (2D-LNIC) is proposed by combining an infinite collapse map (1D-ICM) and a logistic map. There are two control parameters in 2D-LNIC, and it exhibits good chaotic performance through the Lyapunov exponent and attractor phase diagram. In the audio encryption algorithm, 2D-LNIC generates the keystream, and the encryption algorithm is a process of scrambling and diffusion simultaneously. This structure increases the security of the algorithm. We evaluate AEA-NCS in ESC-50, and the evaluation results show that AEA-NCS exhibits good performance, significantly reducing the correlation of audio information in adjacent times.

Suggested Citation

  • Wu, Rui & Gao, Suo & Wang, Xingyuan & Liu, Songbo & Li, Qi & Erkan, Uğur & Tang, Xianglong, 2022. "AEA-NCS: An audio encryption algorithm based on a nested chaotic system," Chaos, Solitons & Fractals, Elsevier, vol. 165(P1).
  • Handle: RePEc:eee:chsofr:v:165:y:2022:i:p1:s0960077922009493
    DOI: 10.1016/j.chaos.2022.112770
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S0960077922009493
    Download Restriction: Full text for ScienceDirect subscribers only

    File URL: https://libkey.io/10.1016/j.chaos.2022.112770?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Zhou, Shuang & Wang, Xingyuan & Wang, Mingxu & Zhang, Yingqian, 2020. "Simple colour image cryptosystem with very high level of security," Chaos, Solitons & Fractals, Elsevier, vol. 141(C).
    2. Li, Xuejun & Mou, Jun & Banerjee, Santo & Wang, Zhisen & Cao, Yinghong, 2022. "Design and DSP implementation of a fractional-order detuned laser hyperchaotic circuit with applications in image encryption," Chaos, Solitons & Fractals, Elsevier, vol. 159(C).
    3. Wang, Mingxu & Wang, Xingyuan & Wang, Chunpeng & Xia, Zhiqiu & Zhao, Hongyu & Gao, Suo & Zhou, Shuang & Yao, Nianmin, 2020. "Spatiotemporal chaos in cross coupled map lattice with dynamic coupling coefficient and its application in bit-level color image encryption," Chaos, Solitons & Fractals, Elsevier, vol. 139(C).
    4. Ma, Xujiong & Mou, Jun & Xiong, Li & Banerjee, Santo & Cao, Yinghong & Wang, Jieyang, 2021. "A novel chaotic circuit with coexistence of multiple attractors and state transition based on two memristors," Chaos, Solitons & Fractals, Elsevier, vol. 152(C).
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Erkan, Uğur & Toktas, Abdurrahim & Lai, Qiang, 2023. "Design of two dimensional hyperchaotic system through optimization benchmark function," Chaos, Solitons & Fractals, Elsevier, vol. 167(C).
    2. Gao, Suo & Iu, Herbert Ho-Ching & Mou, Jun & Erkan, Uğur & Liu, Jiafeng & Wu, Rui & Tang, Xianglong, 2024. "Temporal action segmentation for video encryption," Chaos, Solitons & Fractals, Elsevier, vol. 183(C).
    3. Ding, Dawei & Wang, Wei & Yang, Zongli & Hu, Yongbing & Wang, Jin & Wang, Mouyuan & Niu, Yan & Zhu, Haifei, 2023. "An n-dimensional modulo chaotic system with expected Lyapunov exponents and its application in image encryption," Chaos, Solitons & Fractals, Elsevier, vol. 174(C).

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Yan, Minxiu & Jie, Jingfeng, 2022. "Fractional-order multiwing switchable chaotic system with a wide range of parameters," Chaos, Solitons & Fractals, Elsevier, vol. 160(C).
    2. Man, Zhenlong & Li, Jinqing & Di, Xiaoqiang & Sheng, Yaohui & Liu, Zefei, 2021. "Double image encryption algorithm based on neural network and chaos," Chaos, Solitons & Fractals, Elsevier, vol. 152(C).
    3. Zhou, Shuang & Zhao, Zhipeng & Wang, Xingyuan, 2022. "Novel chaotic colour image cryptosystem with deep learning," Chaos, Solitons & Fractals, Elsevier, vol. 161(C).
    4. Zou, Chengye & Wang, Xingyuan & Zhou, Changjun & Xu, Shujuan & Huang, Chun, 2022. "A novel image encryption algorithm based on DNA strand exchange and diffusion," Applied Mathematics and Computation, Elsevier, vol. 430(C).
    5. Ren, Lujie & Mou, Jun & Banerjee, Santo & Zhang, Yushu, 2023. "A hyperchaotic map with a new discrete memristor model: Design, dynamical analysis, implementation and application," Chaos, Solitons & Fractals, Elsevier, vol. 167(C).
    6. Yildirim, Melih, 2022. "Optical color image encryption scheme with a novel DNA encoding algorithm based on a chaotic circuit," Chaos, Solitons & Fractals, Elsevier, vol. 155(C).
    7. Lai, Qiang & Chen, Zhijie, 2023. "Grid-scroll memristive chaotic system with application to image encryption," Chaos, Solitons & Fractals, Elsevier, vol. 170(C).
    8. Fei Yu & Wuxiong Zhang & Xiaoli Xiao & Wei Yao & Shuo Cai & Jin Zhang & Chunhua Wang & Yi Li, 2023. "Dynamic Analysis and FPGA Implementation of a New, Simple 5D Memristive Hyperchaotic Sprott-C System," Mathematics, MDPI, vol. 11(3), pages 1-15, January.
    9. Yan, Shaohui & Jiang, Defeng & Cui, Yu & Zhang, Hanbing & Li, Lin & Jiang, Jiawei, 2024. "A fractional-order hyperchaotic system that is period in integer-order case and its application in a novel high-quality color image encryption algorithm," Chaos, Solitons & Fractals, Elsevier, vol. 182(C).
    10. Reis, Eduardo V.M. & Savi, Marcelo A., 2022. "Spatiotemporal chaos in a conservative Duffing-type system," Chaos, Solitons & Fractals, Elsevier, vol. 165(P1).
    11. Wang, Xingyuan & Guan, Nana & Yang, Jingjing, 2021. "Image encryption algorithm with random scrambling based on one-dimensional logistic self-embedding chaotic map," Chaos, Solitons & Fractals, Elsevier, vol. 150(C).
    12. Lai, Qiang & Hu, Genwen & Erkan, Uǧur & Toktas, Abdurrahim, 2023. "High-efficiency medical image encryption method based on 2D Logistic-Gaussian hyperchaotic map," Applied Mathematics and Computation, Elsevier, vol. 442(C).
    13. Lin, Hairong & Wang, Chunhua & Du, Sichun & Yao, Wei & Sun, Yichuang, 2023. "A family of memristive multibutterfly chaotic systems with multidirectional initial-based offset boosting," Chaos, Solitons & Fractals, Elsevier, vol. 172(C).
    14. Lu, Yang & Gong, Mengxin & Gan, Zhihua & Chai, Xiuli & Cao, Lvchen & Wang, Binjie, 2023. "Exploiting one-dimensional improved Chebyshev chaotic system and partitioned diffusion based on the divide-and-conquer principle for 3D medical model encryption," Chaos, Solitons & Fractals, Elsevier, vol. 171(C).
    15. Omar Guillén-Fernández & Esteban Tlelo-Cuautle & Luis Gerardo de la Fraga & Yuma Sandoval-Ibarra & Jose-Cruz Nuñez-Perez, 2022. "An Image Encryption Scheme Synchronizing Optimized Chaotic Systems Implemented on Raspberry Pis," Mathematics, MDPI, vol. 10(11), pages 1-23, June.
    16. Du, Chuanhong & Liu, Licai & Zhang, Zhengping & Yu, Shixing, 2022. "A mem-element Wien-Bridge circuit with amplitude modulation and three kinds of offset boosting," Chaos, Solitons & Fractals, Elsevier, vol. 165(P2).
    17. Trujillo-Toledo, D.A. & López-Bonilla, O.R. & García-Guerrero, E.E. & Tlelo-Cuautle, E. & López-Mancilla, D. & Guillén-Fernández, O. & Inzunza-González, E., 2021. "Real-time RGB image encryption for IoT applications using enhanced sequences from chaotic maps," Chaos, Solitons & Fractals, Elsevier, vol. 153(P2).
    18. Yang, Feifei & Ma, Jun & An, Xinlei, 2022. "Mode selection and stability of attractors in Chua circuit driven by piezoelectric sources," Chaos, Solitons & Fractals, Elsevier, vol. 162(C).
    19. Zhenggang Guo & Junjie Wen & Jun Mou, 2022. "Dynamic Analysis and DSP Implementation of Memristor Chaotic Systems with Multiple Forms of Hidden Attractors," Mathematics, MDPI, vol. 11(1), pages 1-13, December.
    20. Li, Peiluan & Han, Liqin & Xu, Changjin & Peng, Xueqing & Rahman, Mati ur & Shi, Sairu, 2023. "Dynamical properties of a meminductor chaotic system with fractal–fractional power law operator," Chaos, Solitons & Fractals, Elsevier, vol. 175(P2).

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:chsofr:v:165:y:2022:i:p1:s0960077922009493. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Thayer, Thomas R. (email available below). General contact details of provider: https://www.journals.elsevier.com/chaos-solitons-and-fractals .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.