IDEAS home Printed from https://ideas.repec.org/a/eee/chsofr/v141y2020ics0960077920306214.html
   My bibliography  Save this article

Simple colour image cryptosystem with very high level of security

Author

Listed:
  • Zhou, Shuang
  • Wang, Xingyuan
  • Wang, Mingxu
  • Zhang, Yingqian

Abstract

To obtain a more secure colour image cryptosystem without complex construction, this paper presents a general simple colour image encryption model with a very high level of security, and that is based on two nearby orbits of chaotic systems. First, the initial value of a one-dimensional (1D) chaotic map is obtained using plaintext. Then, we obtain two nearby orbits of 1D chaotic maps to generate three new chaotic signals. Next, the generated systems independently encrypt the red, green and blue components (RGB) of the colour image. Finally, the three encrypted images are combined to obtain the final encrypted image. Simulation results show that our method is simple, effective and passed all NIST tests and part of TestU01 test. Since the proposed method is related to plaintext, it has much higher security level compared with the most recently reported chaos-based image algorithms. More importantly, the 1D logistic cryptosystem based on our method has a large key space with higher security.

Suggested Citation

  • Zhou, Shuang & Wang, Xingyuan & Wang, Mingxu & Zhang, Yingqian, 2020. "Simple colour image cryptosystem with very high level of security," Chaos, Solitons & Fractals, Elsevier, vol. 141(C).
  • Handle: RePEc:eee:chsofr:v:141:y:2020:i:c:s0960077920306214
    DOI: 10.1016/j.chaos.2020.110225
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S0960077920306214
    Download Restriction: Full text for ScienceDirect subscribers only

    File URL: https://libkey.io/10.1016/j.chaos.2020.110225?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Xiao, Di & Liao, Xiaofeng & Wei, Pengcheng, 2009. "Analysis and improvement of a chaos-based image encryption algorithm," Chaos, Solitons & Fractals, Elsevier, vol. 40(5), pages 2191-2199.
    2. Zhou, Qing & Wong, Kwok-wo & Liao, Xiaofeng & Xiang, Tao & Hu, Yue, 2008. "Parallel image encryption algorithm based on discretized chaotic map," Chaos, Solitons & Fractals, Elsevier, vol. 38(4), pages 1081-1092.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Omar Guillén-Fernández & Esteban Tlelo-Cuautle & Luis Gerardo de la Fraga & Yuma Sandoval-Ibarra & Jose-Cruz Nuñez-Perez, 2022. "An Image Encryption Scheme Synchronizing Optimized Chaotic Systems Implemented on Raspberry Pis," Mathematics, MDPI, vol. 10(11), pages 1-23, June.
    2. Wu, Rui & Gao, Suo & Wang, Xingyuan & Liu, Songbo & Li, Qi & Erkan, Uğur & Tang, Xianglong, 2022. "AEA-NCS: An audio encryption algorithm based on a nested chaotic system," Chaos, Solitons & Fractals, Elsevier, vol. 165(P1).
    3. Yan, Minxiu & Jie, Jingfeng, 2022. "Fractional-order multiwing switchable chaotic system with a wide range of parameters," Chaos, Solitons & Fractals, Elsevier, vol. 160(C).
    4. Zhou, Shuang & Zhao, Zhipeng & Wang, Xingyuan, 2022. "Novel chaotic colour image cryptosystem with deep learning," Chaos, Solitons & Fractals, Elsevier, vol. 161(C).
    5. Trujillo-Toledo, D.A. & López-Bonilla, O.R. & García-Guerrero, E.E. & Tlelo-Cuautle, E. & López-Mancilla, D. & Guillén-Fernández, O. & Inzunza-González, E., 2021. "Real-time RGB image encryption for IoT applications using enhanced sequences from chaotic maps," Chaos, Solitons & Fractals, Elsevier, vol. 153(P2).
    6. Man, Zhenlong & Li, Jinqing & Di, Xiaoqiang & Sheng, Yaohui & Liu, Zefei, 2021. "Double image encryption algorithm based on neural network and chaos," Chaos, Solitons & Fractals, Elsevier, vol. 152(C).

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Mazloom, Sahar & Eftekhari-Moghadam, Amir Masud, 2009. "Color image encryption based on Coupled Nonlinear Chaotic Map," Chaos, Solitons & Fractals, Elsevier, vol. 42(3), pages 1745-1754.
    2. Arshad, Usman & Khan, Majid & Shaukat, Sajjad & Amin, Muhammad & Shah, Tariq, 2020. "An efficient image privacy scheme based on nonlinear chaotic system and linear canonical transformation," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 546(C).
    3. Yang, Huaqian & Wong, Kwok-Wo & Liao, Xiaofeng & Wang, Yong & Yang, Degang, 2009. "One-way hash function construction based on chaotic map network," Chaos, Solitons & Fractals, Elsevier, vol. 41(5), pages 2566-2574.
    4. Bowen Zhang & Lingfeng Liu, 2023. "Chaos-Based Image Encryption: Review, Application, and Challenges," Mathematics, MDPI, vol. 11(11), pages 1-39, June.
    5. Hu, Yue & Liao, Xiaofeng & Wong, Kwok-wo & Zhou, Qing, 2009. "A true random number generator based on mouse movement and chaotic cryptography," Chaos, Solitons & Fractals, Elsevier, vol. 40(5), pages 2286-2293.
    6. Shi, Fan-feng & Li, Tao & Hu, Hao-yu & Li, Yi-fei & Shan, Dan & Jiang, Dong, 2024. "Heterogeneous parallel computing based real-time chaotic video encryption and its application to drone-oriented secure communication," Chaos, Solitons & Fractals, Elsevier, vol. 181(C).
    7. Xiao, Di & Liao, Xiaofeng & Wei, Pengcheng, 2009. "Analysis and improvement of a chaos-based image encryption algorithm," Chaos, Solitons & Fractals, Elsevier, vol. 40(5), pages 2191-2199.
    8. Lian, Shiguo, 2009. "Efficient image or video encryption based on spatiotemporal chaos system," Chaos, Solitons & Fractals, Elsevier, vol. 40(5), pages 2509-2519.
    9. Zhao, Liang & Liao, Xiaofeng & Xiao, Di & Xiang, Tao & Zhou, Qing & Duan, Shukai, 2009. "True random number generation from mobile telephone photo based on chaotic cryptography," Chaos, Solitons & Fractals, Elsevier, vol. 42(3), pages 1692-1699.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:chsofr:v:141:y:2020:i:c:s0960077920306214. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Thayer, Thomas R. (email available below). General contact details of provider: https://www.journals.elsevier.com/chaos-solitons-and-fractals .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.