Image Encryption Algorithm Based on Plane-Level Image Filtering and Discrete Logarithmic Transform
Author
Abstract
Suggested Citation
Download full text from publisher
References listed on IDEAS
- Gao, Tiegang & Chen, Zengqiang & Yuan, Zhuzhi & Yu, Dongchuan, 2007. "Adaptive synchronization of a new hyperchaotic system with uncertain parameters," Chaos, Solitons & Fractals, Elsevier, vol. 33(3), pages 922-928.
- Wang, Xingyuan & Xue, Wenhua & An, Jubai, 2020. "Image encryption algorithm based on Tent-Dynamics coupled map lattices and diffusion of Household," Chaos, Solitons & Fractals, Elsevier, vol. 141(C).
- Wang, Xingyuan & Chen, Xuan, 2021. "An image encryption algorithm based on dynamic row scrambling and Zigzag transformation," Chaos, Solitons & Fractals, Elsevier, vol. 147(C).
- Wei Feng & Jing Zhang & Zhentao Qin & Ahmed A. Abd El-Latif, 2021. "A Secure and Efficient Image Transmission Scheme Based on Two Chaotic Maps," Complexity, Hindawi, vol. 2021, pages 1-19, November.
Citations
Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
Cited by:
- Mingxu Wang & Xianping Fu & Xiaopeng Yan & Lin Teng, 2024. "A New Chaos-Based Image Encryption Algorithm Based on Discrete Fourier Transform and Improved Joseph Traversal," Mathematics, MDPI, vol. 12(5), pages 1-19, February.
- Alexandru Dinu, 2024. "Singularity, Observability, and Independence: Unveiling Lorenz’s Cryptographic Potential," Mathematics, MDPI, vol. 12(18), pages 1-12, September.
- Yuzhou Xi & Yu Ning & Jie Jin & Fei Yu, 2024. "A Dynamic Hill Cipher with Arnold Scrambling Technique for Medical Images Encryption," Mathematics, MDPI, vol. 12(24), pages 1-22, December.
- Gao, Suo & Iu, Herbert Ho-Ching & Mou, Jun & Erkan, Uğur & Liu, Jiafeng & Wu, Rui & Tang, Xianglong, 2024. "Temporal action segmentation for video encryption," Chaos, Solitons & Fractals, Elsevier, vol. 183(C).
- Ramalingam Sriraman & Ohmin Kwon, 2024. "Global Exponential Synchronization of Delayed Quaternion-Valued Neural Networks via Decomposition and Non-Decomposition Methods and Its Application to Image Encryption," Mathematics, MDPI, vol. 12(21), pages 1-35, October.
Most related items
These are the items that most often cite the same works as this one and are cited by the same works as this one.- Man, Zhenlong & Li, Jinqing & Di, Xiaoqiang & Sheng, Yaohui & Liu, Zefei, 2021. "Double image encryption algorithm based on neural network and chaos," Chaos, Solitons & Fractals, Elsevier, vol. 152(C).
- Gong, Li-Hua & Luo, Hui-Xin & Wu, Rou-Qing & Zhou, Nan-Run, 2022. "New 4D chaotic system with hidden attractors and self-excited attractors and its application in image encryption based on RNG," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 591(C).
- Liu, Xilin & Tong, Xiaojun & Wang, Zhu & Zhang, Miao, 2022. "A new n-dimensional conservative chaos based on Generalized Hamiltonian System and its’ applications in image encryption," Chaos, Solitons & Fractals, Elsevier, vol. 154(C).
- Yang, Xiaofang & Lu, Tianxiu & Waseem, Anwar, 2021. "Chaotic properties of a class of coupled mapping lattice induced by fuzzy mapping in non-autonomous discrete systems," Chaos, Solitons & Fractals, Elsevier, vol. 148(C).
- Wang, Xingyuan & Chen, Xuan, 2021. "An image encryption algorithm based on dynamic row scrambling and Zigzag transformation," Chaos, Solitons & Fractals, Elsevier, vol. 147(C).
- Wu, Wenjuan & Chen, Zengqiang & Yuan, Zhuzhi, 2009. "The evolution of a novel four-dimensional autonomous system: Among 3-torus, limit cycle, 2-torus, chaos and hyperchaos," Chaos, Solitons & Fractals, Elsevier, vol. 39(5), pages 2340-2356.
- Aguilar-Bustos, A.Y. & Cruz-Hernández, C., 2009. "Synchronization of discrete-time hyperchaotic systems: An application in communications," Chaos, Solitons & Fractals, Elsevier, vol. 41(3), pages 1301-1310.
- Zhu, Wanting & Sun, Kehui & He, Shaobo & Wang, Huihai & Liu, Wenhao, 2023. "A class of m-dimension grid multi-cavity hyperchaotic maps and its application," Chaos, Solitons & Fractals, Elsevier, vol. 170(C).
- Man, Zhenlong, 2023. "Biometric information security based on double chaotic rotating diffusion," Chaos, Solitons & Fractals, Elsevier, vol. 172(C).
- Li, Damei & Wang, Pei & Lu, Jun-an, 2009. "Some synchronization strategies for a four-scroll chaotic system," Chaos, Solitons & Fractals, Elsevier, vol. 42(4), pages 2553-2559.
- Demirkol, Ahmet Samil & Sahin, Muhammet Emin & Karakaya, Baris & Ulutas, Hasan & Ascoli, Alon & Tetzlaff, Ronald, 2024. "Real time hybrid medical image encryption algorithm combining memristor-based chaos with DNA coding," Chaos, Solitons & Fractals, Elsevier, vol. 183(C).
More about this item
Keywords
image encryption; cryptanalysis; image filtering; discrete logarithm; security analysis;All these keywords.
Statistics
Access and download statisticsCorrections
All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:gam:jmathe:v:10:y:2022:i:15:p:2751-:d:879299. See general information about how to correct material in RePEc.
If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.
If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .
If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.
For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: MDPI Indexing Manager (email available below). General contact details of provider: https://www.mdpi.com .
Please note that corrections may take a couple of weeks to filter through the various RePEc services.