IDEAS home Printed from https://ideas.repec.org/a/eee/chsofr/v147y2021ics0960077921003167.html
   My bibliography  Save this article

An image encryption algorithm based on dynamic row scrambling and Zigzag transformation

Author

Listed:
  • Wang, Xingyuan
  • Chen, Xuan

Abstract

This paper introduces two new one-dimensional chaotic systems. They can be considered as an improvement of Logistic map, Sine map and Tent map. One is the chaotic system composed of Sine and Tent maps (STCS), the other is Logistic-Logistic chaotic system (L-LCS). Based on the two, an image encryption algorithm using dynamic row scrambling and Zigzag transformation is proposed. Firstly, the image is traversed in different directions of odd and even rows, and the results are scrambled with the chaotic sequence generated by STCS. Secondly, based on standard Zigzag scrambling idea, a special traversal method is used, that is, for the different permutation of the lower triangle and the upper triangle of the matrix (each triangular matrix does not contain the values on the main and sub diagonals) in order and direction. Then, combined with the chaotic sequence generated by L-LCS, two different diffusion formulas are used to diffuse the segmented image. Finally, this encryption scheme can also be extended to color images. Experimental simulation and performance analysis show that the encryption algorithm has better security.

Suggested Citation

  • Wang, Xingyuan & Chen, Xuan, 2021. "An image encryption algorithm based on dynamic row scrambling and Zigzag transformation," Chaos, Solitons & Fractals, Elsevier, vol. 147(C).
  • Handle: RePEc:eee:chsofr:v:147:y:2021:i:c:s0960077921003167
    DOI: 10.1016/j.chaos.2021.110962
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S0960077921003167
    Download Restriction: Full text for ScienceDirect subscribers only

    File URL: https://libkey.io/10.1016/j.chaos.2021.110962?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Xinsheng Li & Zhilong Xie & Jiang Wu & Taiyong Li, 2019. "Image Encryption Based on Dynamic Filtering and Bit Cuboid Operations," Complexity, Hindawi, vol. 2019, pages 1-16, February.
    2. Wang, Xingyuan & Xue, Wenhua & An, Jubai, 2020. "Image encryption algorithm based on Tent-Dynamics coupled map lattices and diffusion of Household," Chaos, Solitons & Fractals, Elsevier, vol. 141(C).
    3. Sun, Fuyan & Liu, Shutang & Li, Zhongqin & Lü, Zongwang, 2008. "A novel image encryption scheme based on spatial chaos map," Chaos, Solitons & Fractals, Elsevier, vol. 38(3), pages 631-640.
    4. Malik, Dania Saleem & Shah, Tariq, 2020. "Color multiple image encryption scheme based on 3D-chaotic maps," Mathematics and Computers in Simulation (MATCOM), Elsevier, vol. 178(C), pages 646-666.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Zhu, Wanting & Sun, Kehui & He, Shaobo & Wang, Huihai & Liu, Wenhao, 2023. "A class of m-dimension grid multi-cavity hyperchaotic maps and its application," Chaos, Solitons & Fractals, Elsevier, vol. 170(C).
    2. Liu, Xilin & Tong, Xiaojun & Wang, Zhu & Zhang, Miao, 2022. "A new n-dimensional conservative chaos based on Generalized Hamiltonian System and its’ applications in image encryption," Chaos, Solitons & Fractals, Elsevier, vol. 154(C).
    3. Gong, Li-Hua & Luo, Hui-Xin & Wu, Rou-Qing & Zhou, Nan-Run, 2022. "New 4D chaotic system with hidden attractors and self-excited attractors and its application in image encryption based on RNG," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 591(C).
    4. Wei Feng & Xiangyu Zhao & Jing Zhang & Zhentao Qin & Junkun Zhang & Yigang He, 2022. "Image Encryption Algorithm Based on Plane-Level Image Filtering and Discrete Logarithmic Transform," Mathematics, MDPI, vol. 10(15), pages 1-24, August.
    5. Man, Zhenlong & Li, Jinqing & Di, Xiaoqiang & Sheng, Yaohui & Liu, Zefei, 2021. "Double image encryption algorithm based on neural network and chaos," Chaos, Solitons & Fractals, Elsevier, vol. 152(C).

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Bowen Zhang & Lingfeng Liu, 2023. "Chaos-Based Image Encryption: Review, Application, and Challenges," Mathematics, MDPI, vol. 11(11), pages 1-39, June.
    2. Mazloom, Sahar & Eftekhari-Moghadam, Amir Masud, 2009. "Color image encryption based on Coupled Nonlinear Chaotic Map," Chaos, Solitons & Fractals, Elsevier, vol. 42(3), pages 1745-1754.
    3. Man, Zhenlong & Li, Jinqing & Di, Xiaoqiang & Sheng, Yaohui & Liu, Zefei, 2021. "Double image encryption algorithm based on neural network and chaos," Chaos, Solitons & Fractals, Elsevier, vol. 152(C).
    4. Zhu, Shenli & Deng, Xiaoheng & Zhang, Wendong & Zhu, Congxu, 2023. "Secure image encryption scheme based on a new robust chaotic map and strong S-box," Mathematics and Computers in Simulation (MATCOM), Elsevier, vol. 207(C), pages 322-346.
    5. Man, Zhenlong, 2023. "Biometric information security based on double chaotic rotating diffusion," Chaos, Solitons & Fractals, Elsevier, vol. 172(C).
    6. Wang, Xingyuan & Du, Xiaohui, 2022. "Pixel-level and bit-level image encryption method based on Logistic-Chebyshev dynamic coupled map lattices," Chaos, Solitons & Fractals, Elsevier, vol. 155(C).
    7. Shenli Zhu & Xiaoheng Deng & Wendong Zhang & Congxu Zhu, 2023. "Image Encryption Scheme Based on Newly Designed Chaotic Map and Parallel DNA Coding," Mathematics, MDPI, vol. 11(1), pages 1-22, January.
    8. Liu, Lingfeng & Wang, Jie, 2023. "A cluster of 1D quadratic chaotic map and its applications in image encryption," Mathematics and Computers in Simulation (MATCOM), Elsevier, vol. 204(C), pages 89-114.
    9. Wei Feng & Xiangyu Zhao & Jing Zhang & Zhentao Qin & Junkun Zhang & Yigang He, 2022. "Image Encryption Algorithm Based on Plane-Level Image Filtering and Discrete Logarithmic Transform," Mathematics, MDPI, vol. 10(15), pages 1-24, August.
    10. Yang, Xiaofang & Lu, Tianxiu & Waseem, Anwar, 2021. "Chaotic properties of a class of coupled mapping lattice induced by fuzzy mapping in non-autonomous discrete systems," Chaos, Solitons & Fractals, Elsevier, vol. 148(C).
    11. Moreira Bezerra, João Inácio & Valduga de Almeida Camargo, Vinícius & Molter, Alexandre, 2021. "A new efficient permutation-diffusion encryption algorithm based on a chaotic map," Chaos, Solitons & Fractals, Elsevier, vol. 151(C).
    12. Xinsheng Li & Taiyong Li & Jiang Wu & Zhilong Xie & Jiayi Shi, 2019. "Joint image compression and encryption based on sparse Bayesian learning and bit-level 3D Arnold cat maps," PLOS ONE, Public Library of Science, vol. 14(11), pages 1-29, November.
    13. Wang, Xingyuan & Liu, Huipeng, 2022. "Cross-plane multi-image encryption using chaos and blurred pixels," Chaos, Solitons & Fractals, Elsevier, vol. 164(C).
    14. Zhang, Shijie & Liu, Lingfeng, 2021. "A novel image encryption algorithm based on SPWLCM and DNA coding," Mathematics and Computers in Simulation (MATCOM), Elsevier, vol. 190(C), pages 723-744.
    15. Demirkol, Ahmet Samil & Sahin, Muhammet Emin & Karakaya, Baris & Ulutas, Hasan & Ascoli, Alon & Tetzlaff, Ronald, 2024. "Real time hybrid medical image encryption algorithm combining memristor-based chaos with DNA coding," Chaos, Solitons & Fractals, Elsevier, vol. 183(C).
    16. Jiang Wu & Feng Miu & Taiyong Li, 2020. "Daily Crude Oil Price Forecasting Based on Improved CEEMDAN, SCA, and RVFL: A Case Study in WTI Oil Market," Energies, MDPI, vol. 13(7), pages 1-20, April.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:chsofr:v:147:y:2021:i:c:s0960077921003167. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Thayer, Thomas R. (email available below). General contact details of provider: https://www.journals.elsevier.com/chaos-solitons-and-fractals .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.