IDEAS home Printed from https://ideas.repec.org/a/hin/complx/9597619.html
   My bibliography  Save this article

A New Image Encryption Scheme Based on Hybrid Chaotic Maps

Author

Listed:
  • Ibrahim Yasser
  • Fahmi Khalifa
  • Mohamed A. Mohamed
  • Ahmed S. Samrah

Abstract

Chaos-based encryption algorithms offer many advantages over conventional cryptographic algorithms, such as speed, high security, affordable overheads for computation, and procedure power. In this paper, we propose a novel perturbation algorithm for data encryption based on double chaotic systems. A new image encryption algorithm based on the proposed chaotic maps is introduced. The proposed chaotification method is a hybrid technique that parallels and combines the chaotic maps. It is based on combination between Discrete Wavelet Transform (DWT) to decompose the original image into sub-bands and both permutation and diffusion properties are attained using the chaotic states and parameters of the proposed maps, which are then concerned in shuffling of pixel and operations of substitution, respectively. Security, statistical test analyses, and comparison with other techniques indicate that the proposed algorithm has promising effect and it can resist several common attacks. Namely, the average values for UACI and NPCR metrics were 33.6248% and 99.6472%, respectively. Additionally, unscrambling quality can fulfill security and execution prerequisites as evidenced by PSNR (9.005955) and entropy (7.999275) values. In sum, the proposed method has enough ability to achieve low residual intelligibility with high quality recovered data, high sensitivity, and high security performance compared to some other recent literature approaches.

Suggested Citation

  • Ibrahim Yasser & Fahmi Khalifa & Mohamed A. Mohamed & Ahmed S. Samrah, 2020. "A New Image Encryption Scheme Based on Hybrid Chaotic Maps," Complexity, Hindawi, vol. 2020, pages 1-23, July.
  • Handle: RePEc:hin:complx:9597619
    DOI: 10.1155/2020/9597619
    as

    Download full text from publisher

    File URL: http://downloads.hindawi.com/journals/8503/2020/9597619.pdf
    Download Restriction: no

    File URL: http://downloads.hindawi.com/journals/8503/2020/9597619.xml
    Download Restriction: no

    File URL: https://libkey.io/10.1155/2020/9597619?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Wang, Xingyuan & Du, Xiaohui, 2022. "Pixel-level and bit-level image encryption method based on Logistic-Chebyshev dynamic coupled map lattices," Chaos, Solitons & Fractals, Elsevier, vol. 155(C).
    2. Man, Zhenlong & Li, Jinqing & Di, Xiaoqiang & Sheng, Yaohui & Liu, Zefei, 2021. "Double image encryption algorithm based on neural network and chaos," Chaos, Solitons & Fractals, Elsevier, vol. 152(C).

    More about this item

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:hin:complx:9597619. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    We have no bibliographic references for this item. You can help adding them by using this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Mohamed Abdelhakeem (email available below). General contact details of provider: https://www.hindawi.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.