IDEAS home Printed from https://ideas.repec.org/a/eee/chsofr/v161y2022ics0960077922005902.html
   My bibliography  Save this article

Novel chaotic colour image cryptosystem with deep learning

Author

Listed:
  • Zhou, Shuang
  • Zhao, Zhipeng
  • Wang, Xingyuan

Abstract

A chaotic colour image cryptosystem frame with deep learning is proposed in this paper. First, we choose a chaotic system, after which a long short-term memory network is used to train 4D hyper-chaotic Lorenz signals and forecast four new signals, which passed the randomness test. Finally, we applied them to the colour cryptosystem. Given that new chaotic signals generated by deep learning are different from the original chaotic signals and the complex structure of deep learning, it is difficult to be attacked. Simulation results indicate that the proposed method has a high level of security compared to the representative image encryption algorithms.

Suggested Citation

  • Zhou, Shuang & Zhao, Zhipeng & Wang, Xingyuan, 2022. "Novel chaotic colour image cryptosystem with deep learning," Chaos, Solitons & Fractals, Elsevier, vol. 161(C).
  • Handle: RePEc:eee:chsofr:v:161:y:2022:i:c:s0960077922005902
    DOI: 10.1016/j.chaos.2022.112380
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S0960077922005902
    Download Restriction: Full text for ScienceDirect subscribers only

    File URL: https://libkey.io/10.1016/j.chaos.2022.112380?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Zhou, Shuang & Wang, Xingyuan & Wang, Mingxu & Zhang, Yingqian, 2020. "Simple colour image cryptosystem with very high level of security," Chaos, Solitons & Fractals, Elsevier, vol. 141(C).
    2. Wang, Mingxu & Wang, Xingyuan & Wang, Chunpeng & Xia, Zhiqiu & Zhao, Hongyu & Gao, Suo & Zhou, Shuang & Yao, Nianmin, 2020. "Spatiotemporal chaos in cross coupled map lattice with dynamic coupling coefficient and its application in bit-level color image encryption," Chaos, Solitons & Fractals, Elsevier, vol. 139(C).
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Long, Guoqiang & Chai, Xiuli & Gan, Zhihua & Jiang, Donghua & He, Xin & Sun, Mengge, 2023. "Exploiting one-dimensional exponential Chebyshev chaotic map and matching embedding for visually meaningful image encryption," Chaos, Solitons & Fractals, Elsevier, vol. 176(C).
    2. Wang, Mingxu & Fu, Xianping & Teng, Lin & Yan, Xiaopeng & Xia, Zhiqiu & Liu, Pengbo, 2024. "A new 2D-HELS hyperchaotic map and its application on image encryption using RNA operation and dynamic confusion," Chaos, Solitons & Fractals, Elsevier, vol. 183(C).
    3. Víctor Manuel Silva-García & Rolando Flores-Carapia & Manuel Alejandro Cardona-López & Miguel Gabriel Villarreal-Cervantes, 2023. "Generation of Boxes and Permutations Using a Bijective Function and the Lorenz Equations: An Application to Color Image Encryption," Mathematics, MDPI, vol. 11(3), pages 1-25, January.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Wu, Rui & Gao, Suo & Wang, Xingyuan & Liu, Songbo & Li, Qi & Erkan, Uğur & Tang, Xianglong, 2022. "AEA-NCS: An audio encryption algorithm based on a nested chaotic system," Chaos, Solitons & Fractals, Elsevier, vol. 165(P1).
    2. Yan, Minxiu & Jie, Jingfeng, 2022. "Fractional-order multiwing switchable chaotic system with a wide range of parameters," Chaos, Solitons & Fractals, Elsevier, vol. 160(C).
    3. Man, Zhenlong & Li, Jinqing & Di, Xiaoqiang & Sheng, Yaohui & Liu, Zefei, 2021. "Double image encryption algorithm based on neural network and chaos," Chaos, Solitons & Fractals, Elsevier, vol. 152(C).
    4. Omar Guillén-Fernández & Esteban Tlelo-Cuautle & Luis Gerardo de la Fraga & Yuma Sandoval-Ibarra & Jose-Cruz Nuñez-Perez, 2022. "An Image Encryption Scheme Synchronizing Optimized Chaotic Systems Implemented on Raspberry Pis," Mathematics, MDPI, vol. 10(11), pages 1-23, June.
    5. Zou, Chengye & Wang, Xingyuan & Zhou, Changjun & Xu, Shujuan & Huang, Chun, 2022. "A novel image encryption algorithm based on DNA strand exchange and diffusion," Applied Mathematics and Computation, Elsevier, vol. 430(C).
    6. Trujillo-Toledo, D.A. & López-Bonilla, O.R. & García-Guerrero, E.E. & Tlelo-Cuautle, E. & López-Mancilla, D. & Guillén-Fernández, O. & Inzunza-González, E., 2021. "Real-time RGB image encryption for IoT applications using enhanced sequences from chaotic maps," Chaos, Solitons & Fractals, Elsevier, vol. 153(P2).
    7. Ding, Dawei & Zhu, Haifei & Zhang, Hongwei & Yang, Zongli & Xie, Dong, 2024. "An n-dimensional polynomial modulo chaotic map with controllable range of Lyapunov exponents and its application in color image encryption," Chaos, Solitons & Fractals, Elsevier, vol. 185(C).
    8. Yan, Shaohui & Jiang, Defeng & Cui, Yu & Zhang, Hanbing & Li, Lin & Jiang, Jiawei, 2024. "A fractional-order hyperchaotic system that is period in integer-order case and its application in a novel high-quality color image encryption algorithm," Chaos, Solitons & Fractals, Elsevier, vol. 182(C).
    9. Wang, Mingxu & Fu, Xianping & Teng, Lin & Yan, Xiaopeng & Xia, Zhiqiu & Liu, Pengbo, 2024. "A new 2D-HELS hyperchaotic map and its application on image encryption using RNA operation and dynamic confusion," Chaos, Solitons & Fractals, Elsevier, vol. 183(C).
    10. Reis, Eduardo V.M. & Savi, Marcelo A., 2022. "Spatiotemporal chaos in a conservative Duffing-type system," Chaos, Solitons & Fractals, Elsevier, vol. 165(P1).
    11. Wang, Xingyuan & Guan, Nana & Yang, Jingjing, 2021. "Image encryption algorithm with random scrambling based on one-dimensional logistic self-embedding chaotic map," Chaos, Solitons & Fractals, Elsevier, vol. 150(C).
    12. Mingxu Wang & Xianping Fu & Xiaopeng Yan & Lin Teng, 2024. "A New Chaos-Based Image Encryption Algorithm Based on Discrete Fourier Transform and Improved Joseph Traversal," Mathematics, MDPI, vol. 12(5), pages 1-19, February.
    13. Lu, Yang & Gong, Mengxin & Gan, Zhihua & Chai, Xiuli & Cao, Lvchen & Wang, Binjie, 2023. "Exploiting one-dimensional improved Chebyshev chaotic system and partitioned diffusion based on the divide-and-conquer principle for 3D medical model encryption," Chaos, Solitons & Fractals, Elsevier, vol. 171(C).

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:chsofr:v:161:y:2022:i:c:s0960077922005902. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Thayer, Thomas R. (email available below). General contact details of provider: https://www.journals.elsevier.com/chaos-solitons-and-fractals .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.