IDEAS home Printed from https://ideas.repec.org/a/eee/chsofr/v188y2024ics0960077924010737.html
   My bibliography  Save this article

A multi-image encryption scheme based on block compressive sensing and nonlinear bifurcation diffusion

Author

Listed:
  • Hu, Long-Long
  • Chen, Ming-Xuan
  • Wang, Meng-Meng
  • Zhou, Nan-Run

Abstract

With the frequent cyberattacks and the rapid growth of image data volume, compressive sensing based image encryption algorithms have been widely studied. However, the existing schemes are usually imperfect in terms of encryption capacity, reconstruction quality and security. To address these issues, a novel multi-image encryption scheme is presented based on block compressive sensing and nonlinear bifurcation diffusion. Firstly, a block-level adaptive thresholding sparsification algorithm is devised to optimize the image sparsity and the decryption quality by dynamically adjusting the local thresholds for different wavelet coefficient regions according to their specific features. Secondly, to destroy the inter-block correlations while reduce the transmission burden, the orthogonal Hadamard matrix and the chaotic system are employed to construct a distinct measurement matrix for each image block. Finally, a nonlinear bifurcation diffusion algorithm based on the complete binary tree is developed to enhance the encryption performance through mutual diffusion among non-adjacent pixels. Additionally, the secure hash algorithm is employed to establish a close relation between plaintext images and secret keys to defy the chosen-plaintext attack. Simulation experiments and performance analyses demonstrate the feasibility and the reliability of our presented multi-image encryption scheme. Compared with some newly advanced schemes, our presented multi-image encryption scheme exhibits certain advantages concerning compression performance, key space, and resistance against statistical and differential attacks.

Suggested Citation

  • Hu, Long-Long & Chen, Ming-Xuan & Wang, Meng-Meng & Zhou, Nan-Run, 2024. "A multi-image encryption scheme based on block compressive sensing and nonlinear bifurcation diffusion," Chaos, Solitons & Fractals, Elsevier, vol. 188(C).
  • Handle: RePEc:eee:chsofr:v:188:y:2024:i:c:s0960077924010737
    DOI: 10.1016/j.chaos.2024.115521
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S0960077924010737
    Download Restriction: Full text for ScienceDirect subscribers only

    File URL: https://libkey.io/10.1016/j.chaos.2024.115521?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:chsofr:v:188:y:2024:i:c:s0960077924010737. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    We have no bibliographic references for this item. You can help adding them by using this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Thayer, Thomas R. (email available below). General contact details of provider: https://www.journals.elsevier.com/chaos-solitons-and-fractals .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.