IDEAS home Printed from https://ideas.repec.org/a/eee/chsofr/v150y2021ics0960077921004720.html
   My bibliography  Save this article

Piecewise Chebyshev cardinal functions: Application for constrained fractional optimal control problems

Author

Listed:
  • Heydari, M.H.
  • Razzaghi, M.

Abstract

In this paper, a new set of basis functions called the piecewise Chebyshev cardinal functions is generated to investigate a class of constrained fractional optimal control problems. These basis functions possess many useful properties, such as orthogonality, cardinality and spectral accuracy. The fractional integral matrix of these functions is obtained. A direct scheme based on the these basis functions together with their fractional integral matrix is developed for solving the problem under consideration. The established method transforms solving the original problem into solving a constrained minimization problem by approximating the state and control variables in terms of the piecewise Chebyshev cardinal functions. Some numerical examples are given to show the efficiency of the proposed technique.

Suggested Citation

  • Heydari, M.H. & Razzaghi, M., 2021. "Piecewise Chebyshev cardinal functions: Application for constrained fractional optimal control problems," Chaos, Solitons & Fractals, Elsevier, vol. 150(C).
  • Handle: RePEc:eee:chsofr:v:150:y:2021:i:c:s0960077921004720
    DOI: 10.1016/j.chaos.2021.111118
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S0960077921004720
    Download Restriction: Full text for ScienceDirect subscribers only

    File URL: https://libkey.io/10.1016/j.chaos.2021.111118?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Heydari, M.H., 2020. "Chebyshev cardinal functions for a new class of nonlinear optimal control problems generated by Atangana–Baleanu–Caputo variable-order fractional derivative," Chaos, Solitons & Fractals, Elsevier, vol. 130(C).
    2. Shah, Kamal & Alqudah, Manar A. & Jarad, Fahd & Abdeljawad, Thabet, 2020. "Semi-analytical study of Pine Wilt Disease model with convex rate under Caputo–Febrizio fractional order derivative," Chaos, Solitons & Fractals, Elsevier, vol. 135(C).
    3. Nastaran Ejlali & Seyed Mohammad Hosseini, 2017. "A Pseudospectral Method for Fractional Optimal Control Problems," Journal of Optimization Theory and Applications, Springer, vol. 174(1), pages 83-107, July.
    4. Heydari, M.H. & Hooshmandasl, M.R. & Maalek Ghaini, F.M. & Cattani, C., 2016. "Wavelets method for solving fractional optimal control problems," Applied Mathematics and Computation, Elsevier, vol. 286(C), pages 139-154.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Heydari, M.H. & Razzaghi, M. & Rouzegar, J., 2022. "Chebyshev cardinal polynomials for delay distributed-order fractional fourth-order sub-diffusion equation," Chaos, Solitons & Fractals, Elsevier, vol. 162(C).
    2. Heydari, M.H. & Razzaghi, M., 2023. "Piecewise fractional Chebyshev cardinal functions: Application for time fractional Ginzburg–Landau equation with a non-smooth solution," Chaos, Solitons & Fractals, Elsevier, vol. 171(C).
    3. Marzban, Hamid Reza, 2022. "A generalization of Müntz-Legendre polynomials and its implementation in optimal control of nonlinear fractional delay systems," Chaos, Solitons & Fractals, Elsevier, vol. 158(C).
    4. Pishro, Aboozar & Shahrokhi, Mohammad & Sadeghi, Hamed, 2022. "Fault-tolerant adaptive fractional controller design for incommensurate fractional-order nonlinear dynamic systems subject to input and output restrictions," Chaos, Solitons & Fractals, Elsevier, vol. 157(C).
    5. Marzban, Hamid Reza & Nezami, Atiyeh, 2022. "Analysis of nonlinear fractional optimal control systems described by delay Volterra–Fredholm integral equations via a new spectral collocation method," Chaos, Solitons & Fractals, Elsevier, vol. 162(C).
    6. Heydari, M.H. & Razzaghi, M., 2021. "A numerical approach for a class of nonlinear optimal control problems with piecewise fractional derivative," Chaos, Solitons & Fractals, Elsevier, vol. 152(C).

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Heydari, M.H. & Razzaghi, M., 2021. "A numerical approach for a class of nonlinear optimal control problems with piecewise fractional derivative," Chaos, Solitons & Fractals, Elsevier, vol. 152(C).
    2. Ullah, Ihsan & Ahmad, Saeed & Rahman, Mati ur & Arfan, Muhammad, 2021. "Investigation of fractional order tuberculosis (TB) model via Caputo derivative," Chaos, Solitons & Fractals, Elsevier, vol. 142(C).
    3. Chimmula, Vinay Kumar Reddy & Zhang, Lei, 2020. "Time series forecasting of COVID-19 transmission in Canada using LSTM networks," Chaos, Solitons & Fractals, Elsevier, vol. 135(C).
    4. Etemad, Sina & Avci, Ibrahim & Kumar, Pushpendra & Baleanu, Dumitru & Rezapour, Shahram, 2022. "Some novel mathematical analysis on the fractal–fractional model of the AH1N1/09 virus and its generalized Caputo-type version," Chaos, Solitons & Fractals, Elsevier, vol. 162(C).
    5. Rahman, Mati ur & Arfan, Muhammad & Shah, Kamal & Gómez-Aguilar, J.F., 2020. "Investigating a nonlinear dynamical model of COVID-19 disease under fuzzy caputo, random and ABC fractional order derivative," Chaos, Solitons & Fractals, Elsevier, vol. 140(C).
    6. Mohammadi, Hakimeh & Kumar, Sunil & Rezapour, Shahram & Etemad, Sina, 2021. "A theoretical study of the Caputo–Fabrizio fractional modeling for hearing loss due to Mumps virus with optimal control," Chaos, Solitons & Fractals, Elsevier, vol. 144(C).
    7. Ghanbari, Behzad & Atangana, Abdon, 2020. "A new application of fractional Atangana–Baleanu derivatives: Designing ABC-fractional masks in image processing," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 542(C).
    8. Marzban, Hamid Reza, 2022. "A generalization of Müntz-Legendre polynomials and its implementation in optimal control of nonlinear fractional delay systems," Chaos, Solitons & Fractals, Elsevier, vol. 158(C).
    9. Hassani, Hossein & Avazzadeh, Zakieh, 2019. "Transcendental Bernstein series for solving nonlinear variable order fractional optimal control problems," Applied Mathematics and Computation, Elsevier, vol. 362(C), pages 1-1.
    10. Fairouz Tchier & Ioannis Dassios & Ferdous Tawfiq & Lakhdar Ragoub, 2021. "On the Approximate Solution of Partial Integro-Differential Equations Using the Pseudospectral Method Based on Chebyshev Cardinal Functions," Mathematics, MDPI, vol. 9(3), pages 1-14, February.
    11. Ayazi, N. & Mokhtary, P. & Moghaddam, B. Parsa, 2024. "Efficiently solving fractional delay differential equations of variable order via an adjusted spectral element approach," Chaos, Solitons & Fractals, Elsevier, vol. 181(C).
    12. Begum, Razia & Tunç, Osman & Khan, Hasib & Gulzar, Haseena & Khan, Aziz, 2021. "A fractional order Zika virus model with Mittag–Leffler kernel," Chaos, Solitons & Fractals, Elsevier, vol. 146(C).
    13. Ndenda, J.P. & Njagarah, J.B.H. & Shaw, S., 2021. "Role of immunotherapy in tumor-immune interaction: Perspectives from fractional-order modelling and sensitivity analysis," Chaos, Solitons & Fractals, Elsevier, vol. 148(C).
    14. Ahmad, Saeed & Rahman, Mati ur & Arfan, Muhammad, 2021. "On the analysis of semi-analytical solutions of Hepatitis B epidemic model under the Caputo-Fabrizio operator," Chaos, Solitons & Fractals, Elsevier, vol. 146(C).
    15. Gao, Wei & Veeresha, P. & Baskonus, Haci Mehmet & Prakasha, D. G. & Kumar, Pushpendra, 2020. "A new study of unreported cases of 2019-nCOV epidemic outbreaks," Chaos, Solitons & Fractals, Elsevier, vol. 138(C).
    16. Abdo, Mohammed S. & Shah, Kamal & Wahash, Hanan A. & Panchal, Satish K., 2020. "On a comprehensive model of the novel coronavirus (COVID-19) under Mittag-Leffler derivative," Chaos, Solitons & Fractals, Elsevier, vol. 135(C).
    17. Fakhrodin Mohammadi & Hossein Hassani, 2019. "Numerical Solution of Two-Dimensional Variable-Order Fractional Optimal Control Problem by Generalized Polynomial Basis," Journal of Optimization Theory and Applications, Springer, vol. 180(2), pages 536-555, February.
    18. Baghani, Omid, 2022. "SCW-iterative-computational method for solving a wide class of nonlinear fractional optimal control problems with Caputo derivatives," Mathematics and Computers in Simulation (MATCOM), Elsevier, vol. 202(C), pages 540-558.
    19. Sathi Patra & Soovoojeet Jana & Sayani Adak & T. K. Kar, 2024. "A deep learning architecture using hybrid and stacks to forecast weekly dengue cases in Laos," The European Physical Journal B: Condensed Matter and Complex Systems, Springer;EDP Sciences, vol. 97(8), pages 1-16, August.
    20. Sabir, Zulqurnain & Said, Salem Ben & Baleanu, Dumitru, 2022. "Swarming optimization to analyze the fractional derivatives and perturbation factors for the novel singular model," Chaos, Solitons & Fractals, Elsevier, vol. 164(C).

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:chsofr:v:150:y:2021:i:c:s0960077921004720. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Thayer, Thomas R. (email available below). General contact details of provider: https://www.journals.elsevier.com/chaos-solitons-and-fractals .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.