IDEAS home Printed from https://ideas.repec.org/a/eee/chsofr/v158y2022ics0960077922003034.html
   My bibliography  Save this article

A generalization of Müntz-Legendre polynomials and its implementation in optimal control of nonlinear fractional delay systems

Author

Listed:
  • Marzban, Hamid Reza

Abstract

A hybrid of Müntz-Legendre polynomials (MLPs) and block-pulse functions (BPFs) is defined and carried out to analyze nonlinear fractional optimal control problems consisting of multiple delays. Instead of using the Caputo fractional derivative, an alternative fractional derivative operator is utilized. The primary optimization problem reduces to an alternative optimization one involving unknown parameters. For this purpose, the fractional Legendre-Gauss quadrature formula is utilized for approximating the associated cost functional and the fractional Legendre-Gaussian nodes are taken as the collocation points. Some new aspects of the proposed basis are demonstrated to verify the effectiveness of the proposed approach based on the Müntz-Legendre basis (MLB) against the classical orthogonal bases. The simulation results certify the feasibility and reliability of the proposed method. Numerous fractional control problems, e.g., bang-bang controls and control systems with any irregularities in the structure of control input can be handled successfully by employing the new fractional basis.

Suggested Citation

  • Marzban, Hamid Reza, 2022. "A generalization of Müntz-Legendre polynomials and its implementation in optimal control of nonlinear fractional delay systems," Chaos, Solitons & Fractals, Elsevier, vol. 158(C).
  • Handle: RePEc:eee:chsofr:v:158:y:2022:i:c:s0960077922003034
    DOI: 10.1016/j.chaos.2022.112093
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S0960077922003034
    Download Restriction: Full text for ScienceDirect subscribers only

    File URL: https://libkey.io/10.1016/j.chaos.2022.112093?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Pourbabaee, Marzieh & Saadatmandi, Abbas, 2022. "A new operational matrix based on Müntz–Legendre polynomials for solving distributed order fractional differential equations," Mathematics and Computers in Simulation (MATCOM), Elsevier, vol. 194(C), pages 210-235.
    2. Haniye Dehestani & Yadollah Ordokhani & Mohsen Razzaghi, 2020. "Fractional-order Bessel wavelet functions for solving variable order fractional optimal control problems with estimation error," International Journal of Systems Science, Taylor & Francis Journals, vol. 51(6), pages 1032-1052, April.
    3. Eduardo L. Ortiz & Allan Pinkus, 2005. "Herman Müntz: A Mathematician’s Odyssey," The Mathematical Intelligencer, Springer, vol. 27(1), pages 22-31, December.
    4. Ali Lotfi, 2017. "A Combination of Variational and Penalty Methods for Solving a Class of Fractional Optimal Control Problems," Journal of Optimization Theory and Applications, Springer, vol. 174(1), pages 65-82, July.
    5. Heydari, M.H. & Razzaghi, M., 2021. "Piecewise Chebyshev cardinal functions: Application for constrained fractional optimal control problems," Chaos, Solitons & Fractals, Elsevier, vol. 150(C).
    6. Borah, Manashita & Das, Debanita & Gayan, Antara & Fenton, Flavio & Cherry, Elizabeth, 2021. "Control and anticontrol of chaos in fractional-order models of Diabetes, HIV, Dengue, Migraine, Parkinson's and Ebola virus diseases," Chaos, Solitons & Fractals, Elsevier, vol. 153(P1).
    7. Ali Lotfi & Sohrab Ali Yousefi, 2017. "A Generalization of Ritz-Variational Method for Solving a Class of Fractional Optimization Problems," Journal of Optimization Theory and Applications, Springer, vol. 174(1), pages 238-255, July.
    8. Omar Naifar & Assaad Jmal & A. M. Nagy & Abdellatif Ben Makhlouf, 2020. "Improved Quasiuniform Stability for Fractional Order Neural Nets with Mixed Delay," Mathematical Problems in Engineering, Hindawi, vol. 2020, pages 1-7, November.
    9. Heydari, M.H. & Razzaghi, M., 2021. "A numerical approach for a class of nonlinear optimal control problems with piecewise fractional derivative," Chaos, Solitons & Fractals, Elsevier, vol. 152(C).
    10. Nastaran Ejlali & Seyed Mohammad Hosseini, 2017. "A Pseudospectral Method for Fractional Optimal Control Problems," Journal of Optimization Theory and Applications, Springer, vol. 174(1), pages 83-107, July.
    11. Shojaeizadeh, T. & Mahmoudi, M. & Darehmiraki, M., 2021. "Optimal control problem of advection-diffusion-reaction equation of kind fractal-fractional applying shifted Jacobi polynomials," Chaos, Solitons & Fractals, Elsevier, vol. 143(C).
    12. Martinez, V.M. & Barbosa, A.N. & Mancera, P.F.A. & Rodrigues, D.S. & Camargo, R.F., 2021. "A fractional calculus model for HIV dynamics: real data, parameter estimation and computational strategies," Chaos, Solitons & Fractals, Elsevier, vol. 152(C).
    13. Pan Mu & Lei Wang & Chongyang Liu, 2020. "A Control Parameterization Method to Solve the Fractional-Order Optimal Control Problem," Journal of Optimization Theory and Applications, Springer, vol. 187(1), pages 234-247, October.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Baleanu, Dumitru & Hasanabadi, Manijeh & Mahmoudzadeh Vaziri, Asadollah & Jajarmi, Amin, 2023. "A new intervention strategy for an HIV/AIDS transmission by a general fractional modeling and an optimal control approach," Chaos, Solitons & Fractals, Elsevier, vol. 167(C).

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Marzban, Hamid Reza & Nezami, Atiyeh, 2022. "Analysis of nonlinear fractional optimal control systems described by delay Volterra–Fredholm integral equations via a new spectral collocation method," Chaos, Solitons & Fractals, Elsevier, vol. 162(C).
    2. Heydari, M.H. & Razzaghi, M., 2021. "A numerical approach for a class of nonlinear optimal control problems with piecewise fractional derivative," Chaos, Solitons & Fractals, Elsevier, vol. 152(C).
    3. Tim Chen & Bunnitru Daleanu & J. C.-Y. Chen*, 2018. "On the Fractional Optimal Control Problems with Singular and Non–Singular Derivative Operators: A Mathematical Derive," Scientific Review, Academic Research Publishing Group, vol. 4(12), pages 95-98, 12-2018.
    4. Heydari, M.H. & Razzaghi, M. & Rouzegar, J., 2022. "Chebyshev cardinal polynomials for delay distributed-order fractional fourth-order sub-diffusion equation," Chaos, Solitons & Fractals, Elsevier, vol. 162(C).
    5. Minati, Ludovico & Frasca, Mattia & Valdes-Sosa, Pedro A. & Barbot, Jean-Pierre & Letellier, Christophe, 2023. "Flatness-based real-time control of experimental analog chaotic oscillators," Chaos, Solitons & Fractals, Elsevier, vol. 177(C).
    6. Sabermahani, Sedigheh & Ordokhani, Yadollah & Rahimkhani, Parisa, 2023. "Application of generalized Lucas wavelet method for solving nonlinear fractal-fractional optimal control problems," Chaos, Solitons & Fractals, Elsevier, vol. 170(C).
    7. Gong, Zhaohua & Liu, Chongyang & Teo, Kok Lay & Yi, Xiaopeng, 2022. "Optimal control of nonlinear fractional systems with multiple pantograph‐delays," Applied Mathematics and Computation, Elsevier, vol. 425(C).
    8. Peng, Hongxin & Ji’e, Musha & Du, Xinyu & Duan, Shukai & Wang, Lidan, 2023. "Design of pseudorandom number generator based on a controllable multi-double-scroll chaotic system," Chaos, Solitons & Fractals, Elsevier, vol. 174(C).
    9. Yang, Changqing, 2023. "Improved spectral deferred correction methods for fractional differential equations," Chaos, Solitons & Fractals, Elsevier, vol. 168(C).
    10. Chongyang Liu & Zhaohua Gong & Changjun Yu & Song Wang & Kok Lay Teo, 2021. "Optimal Control Computation for Nonlinear Fractional Time-Delay Systems with State Inequality Constraints," Journal of Optimization Theory and Applications, Springer, vol. 191(1), pages 83-117, October.
    11. Dumitru Baleanu & Amin Jajarmi & Mojtaba Hajipour, 2017. "A New Formulation of the Fractional Optimal Control Problems Involving Mittag–Leffler Nonsingular Kernel," Journal of Optimization Theory and Applications, Springer, vol. 175(3), pages 718-737, December.
    12. Chongyang Liu & Changjun Yu & Zhaohua Gong & Huey Tyng Cheong & Kok Lay Teo, 2023. "Numerical Computation of Optimal Control Problems with Atangana–Baleanu Fractional Derivatives," Journal of Optimization Theory and Applications, Springer, vol. 197(2), pages 798-816, May.
    13. Wang, Fangyuan & Chen, Chuanjun & Zhou, Zhaojie, 2024. "Integral constraint regularization method for fractional optimal control problem with pointwise state constraint," Chaos, Solitons & Fractals, Elsevier, vol. 180(C).
    14. Mukhtar, Roshana & Chang, Chuan-Yu & Raja, Muhammad Asif Zahoor & Chaudhary, Naveed Ishtiaq & Shu, Chi-Min, 2024. "Novel nonlinear fractional order Parkinson's disease model for brain electrical activity rhythms: Intelligent adaptive Bayesian networks," Chaos, Solitons & Fractals, Elsevier, vol. 180(C).
    15. Mazare, Mahmood, 2024. "Adaptive optimal secure wind power generation control for variable speed wind turbine systems via reinforcement learning," Applied Energy, Elsevier, vol. 353(PA).
    16. Ravi Kanth, A.S.V. & Devi, Sangeeta, 2022. "A computational approach for numerical simulations of the fractal–fractional autoimmune disease model," Chaos, Solitons & Fractals, Elsevier, vol. 165(P2).
    17. Pourbabaee, Marzieh & Saadatmandi, Abbas, 2022. "A new operational matrix based on Müntz–Legendre polynomials for solving distributed order fractional differential equations," Mathematics and Computers in Simulation (MATCOM), Elsevier, vol. 194(C), pages 210-235.
    18. Dehestani, H. & Ordokhani, Y. & Razzaghi, M., 2020. "Application of fractional Gegenbauer functions in variable-order fractional delay-type equations with non-singular kernel derivatives," Chaos, Solitons & Fractals, Elsevier, vol. 140(C).
    19. Saifullah, Sayed & Ali, Amir & Franc Doungmo Goufo, Emile, 2021. "Investigation of complex behaviour of fractal fractional chaotic attractor with mittag-leffler Kernel," Chaos, Solitons & Fractals, Elsevier, vol. 152(C).
    20. Zhao, Yanwei & Wang, Huanqing & Xu, Ning & Zong, Guangdeng & Zhao, Xudong, 2023. "Reinforcement learning-based decentralized fault tolerant control for constrained interconnected nonlinear systems," Chaos, Solitons & Fractals, Elsevier, vol. 167(C).

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:chsofr:v:158:y:2022:i:c:s0960077922003034. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Thayer, Thomas R. (email available below). General contact details of provider: https://www.journals.elsevier.com/chaos-solitons-and-fractals .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.