A new operational matrix based on Müntz–Legendre polynomials for solving distributed order fractional differential equations
Author
Abstract
Suggested Citation
DOI: 10.1016/j.matcom.2021.11.023
Download full text from publisher
As the access to this document is restricted, you may want to search for a different version of it.
References listed on IDEAS
- Pourbabaee, Marzieh & Saadatmandi, Abbas, 2019. "A novel Legendre operational matrix for distributed order fractional differential equations," Applied Mathematics and Computation, Elsevier, vol. 361(C), pages 215-231.
- Nastaran Ejlali & Seyed Mohammad Hosseini, 2017. "A Pseudospectral Method for Fractional Optimal Control Problems," Journal of Optimization Theory and Applications, Springer, vol. 174(1), pages 83-107, July.
Citations
Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
Cited by:
- Kumar, Yashveer & Yadav, Poonam & Singh, Vineet Kumar, 2023. "Distributed order Gauss-Quadrature scheme for distributed order fractional sub-diffusion model," Chaos, Solitons & Fractals, Elsevier, vol. 170(C).
- Yang, Changqing, 2023. "Improved spectral deferred correction methods for fractional differential equations," Chaos, Solitons & Fractals, Elsevier, vol. 168(C).
- Marzban, Hamid Reza, 2022. "A generalization of Müntz-Legendre polynomials and its implementation in optimal control of nonlinear fractional delay systems," Chaos, Solitons & Fractals, Elsevier, vol. 158(C).
Most related items
These are the items that most often cite the same works as this one and are cited by the same works as this one.- Heydari, M.H. & Razzaghi, M., 2021. "A numerical approach for a class of nonlinear optimal control problems with piecewise fractional derivative," Chaos, Solitons & Fractals, Elsevier, vol. 152(C).
- Marzban, Hamid Reza, 2022. "A generalization of Müntz-Legendre polynomials and its implementation in optimal control of nonlinear fractional delay systems," Chaos, Solitons & Fractals, Elsevier, vol. 158(C).
- Kumar, Yashveer & Singh, Vineet Kumar, 2021. "Computational approach based on wavelets for financial mathematical model governed by distributed order fractional differential equation," Mathematics and Computers in Simulation (MATCOM), Elsevier, vol. 190(C), pages 531-569.
- S M, Sivalingam & Kumar, Pushpendra & Govindaraj, V., 2023. "A novel numerical scheme for fractional differential equations using extreme learning machine," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 622(C).
- Yang, Dongsheng & Yu, Yongguang & Wang, Hu & Ren, Guojian & Zhang, Xiaoli, 2024. "Successive lag synchronization of heterogeneous distributed-order coupled neural networks with unbounded delayed coupling," Chaos, Solitons & Fractals, Elsevier, vol. 178(C).
- Kumar, Yashveer & Yadav, Poonam & Singh, Vineet Kumar, 2023. "Distributed order Gauss-Quadrature scheme for distributed order fractional sub-diffusion model," Chaos, Solitons & Fractals, Elsevier, vol. 170(C).
- Derakhshan, Mohammad Hossein & Rezaei, Hamid & Marasi, Hamid Reza, 2023. "An efficient numerical method for the distributed order time-fractional diffusion equation with error analysis and stability," Mathematics and Computers in Simulation (MATCOM), Elsevier, vol. 214(C), pages 315-333.
- Heydari, M.H. & Razzaghi, M., 2021. "Piecewise Chebyshev cardinal functions: Application for constrained fractional optimal control problems," Chaos, Solitons & Fractals, Elsevier, vol. 150(C).
- Tim Chen & Bunnitru Daleanu & J. C.-Y. Chen*, 2018. "On the Fractional Optimal Control Problems with Singular and Non–Singular Derivative Operators: A Mathematical Derive," Scientific Review, Academic Research Publishing Group, vol. 4(12), pages 95-98, 12-2018.
More about this item
Keywords
Distributed order; Caputo derivative; Müntz–Legendre polynomials; Fractional differential equations; Numerical solution;All these keywords.
Statistics
Access and download statisticsCorrections
All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:matcom:v:194:y:2022:i:c:p:210-235. See general information about how to correct material in RePEc.
If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.
If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .
If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.
For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.journals.elsevier.com/mathematics-and-computers-in-simulation/ .
Please note that corrections may take a couple of weeks to filter through the various RePEc services.