IDEAS home Printed from https://ideas.repec.org/a/eee/chsofr/v130y2020ics0960077919303364.html
   My bibliography  Save this article

Chebyshev cardinal functions for a new class of nonlinear optimal control problems generated by Atangana–Baleanu–Caputo variable-order fractional derivative

Author

Listed:
  • Heydari, M.H.

Abstract

This paper introduces a novel class of nonlinear optimal control problems generated by dynamical systems involved with variable-order fractional derivatives in the Atangana–Baleanu–Caputo sense. A computational method based on the Chebyshev cardinal functions and their operational matrix of variable-order fractional derivative (which is generated for the first time in the present study) is proposed for the numerical solution of this class of problems. The presented method is based on transformation of the main problem to solving system of nonlinear algebraic equations. To do this, the state and control variables are expanded in terms of the Chebyshev cardinal functions with unknown coefficients, then the cardinal property of these basis functions together with their operational matrix are employed to generate a constrained extremum problem, which is solved by the Lagrange multipliers method. The applicability and accuracy of the established method are investigated through some numerical examples. The reported results confirm that the established scheme is highly accurate in providing acceptable results.

Suggested Citation

  • Heydari, M.H., 2020. "Chebyshev cardinal functions for a new class of nonlinear optimal control problems generated by Atangana–Baleanu–Caputo variable-order fractional derivative," Chaos, Solitons & Fractals, Elsevier, vol. 130(C).
  • Handle: RePEc:eee:chsofr:v:130:y:2020:i:c:s0960077919303364
    DOI: 10.1016/j.chaos.2019.109401
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S0960077919303364
    Download Restriction: Full text for ScienceDirect subscribers only

    File URL: https://libkey.io/10.1016/j.chaos.2019.109401?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Heydari, Mohammad Hossein & Avazzadeh, Zakieh & Yang, Yin, 2019. "A computational method for solving variable-order fractional nonlinear diffusion-wave equation," Applied Mathematics and Computation, Elsevier, vol. 352(C), pages 235-248.
    2. Hassani, Hossein & Avazzadeh, Zakieh, 2019. "Transcendental Bernstein series for solving nonlinear variable order fractional optimal control problems," Applied Mathematics and Computation, Elsevier, vol. 362(C), pages 1-1.
    3. Atangana, Abdon, 2018. "Blind in a commutative world: Simple illustrations with functions and chaotic attractors," Chaos, Solitons & Fractals, Elsevier, vol. 114(C), pages 347-363.
    4. Heydari, M.H. & Hooshmandasl, M.R. & Maalek Ghaini, F.M. & Cattani, C., 2016. "Wavelets method for solving fractional optimal control problems," Applied Mathematics and Computation, Elsevier, vol. 286(C), pages 139-154.
    5. Hassani, Hossein & Naraghirad, Eskandar, 2019. "A new computational method based on optimization scheme for solving variable-order time fractional Burgers’ equation," Mathematics and Computers in Simulation (MATCOM), Elsevier, vol. 162(C), pages 1-17.
    6. Hosseininia, M. & Heydari, M.H., 2019. "Meshfree moving least squares method for nonlinear variable-order time fractional 2D telegraph equation involving Mittag–Leffler non-singular kernel," Chaos, Solitons & Fractals, Elsevier, vol. 127(C), pages 389-399.
    7. Heydari, M.H. & Avazzadeh, Z. & Mahmoudi, M.R., 2019. "Chebyshev cardinal wavelets for nonlinear stochastic differential equations driven with variable-order fractional Brownian motion," Chaos, Solitons & Fractals, Elsevier, vol. 124(C), pages 105-124.
    8. Heydari, Mohammad Hossein & Avazzadeh, Zakieh & Haromi, Malih Farzi, 2019. "A wavelet approach for solving multi-term variable-order time fractional diffusion-wave equation," Applied Mathematics and Computation, Elsevier, vol. 341(C), pages 215-228.
    9. Hosseininia, M. & Heydari, M.H., 2019. "Legendre wavelets for the numerical solution of nonlinear variable-order time fractional 2D reaction-diffusion equation involving Mittag–Leffler non-singular kernel," Chaos, Solitons & Fractals, Elsevier, vol. 127(C), pages 400-407.
    10. Fakhrodin Mohammadi & Hossein Hassani, 2019. "Numerical Solution of Two-Dimensional Variable-Order Fractional Optimal Control Problem by Generalized Polynomial Basis," Journal of Optimization Theory and Applications, Springer, vol. 180(2), pages 536-555, February.
    11. Heydari, Mohammad Hossein & Avazzadeh, Zakieh, 2018. "Legendre wavelets optimization method for variable-order fractional Poisson equation," Chaos, Solitons & Fractals, Elsevier, vol. 112(C), pages 180-190.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Ashish Rayal & Bhagawati Prasad Joshi & Mukesh Pandey & Delfim F. M. Torres, 2023. "Numerical Investigation of the Fractional Oscillation Equations under the Context of Variable Order Caputo Fractional Derivative via Fractional Order Bernstein Wavelets," Mathematics, MDPI, vol. 11(11), pages 1-22, May.
    2. Heydari, M.H. & Razzaghi, M., 2021. "Piecewise Chebyshev cardinal functions: Application for constrained fractional optimal control problems," Chaos, Solitons & Fractals, Elsevier, vol. 150(C).
    3. Fairouz Tchier & Ioannis Dassios & Ferdous Tawfiq & Lakhdar Ragoub, 2021. "On the Approximate Solution of Partial Integro-Differential Equations Using the Pseudospectral Method Based on Chebyshev Cardinal Functions," Mathematics, MDPI, vol. 9(3), pages 1-14, February.
    4. Dehestani, H. & Ordokhani, Y. & Razzaghi, M., 2020. "Application of fractional Gegenbauer functions in variable-order fractional delay-type equations with non-singular kernel derivatives," Chaos, Solitons & Fractals, Elsevier, vol. 140(C).
    5. Heydari, M.H. & Razzaghi, M., 2021. "A numerical approach for a class of nonlinear optimal control problems with piecewise fractional derivative," Chaos, Solitons & Fractals, Elsevier, vol. 152(C).
    6. Heydari, M. H. & Atangana, A., 2020. "An optimization method based on the generalized Lucas polynomials for variable-order space-time fractional mobile-immobile advection-dispersion equation involving derivatives with non-singular kernels," Chaos, Solitons & Fractals, Elsevier, vol. 132(C).

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Hosseininia, M. & Heydari, M.H., 2019. "Legendre wavelets for the numerical solution of nonlinear variable-order time fractional 2D reaction-diffusion equation involving Mittag–Leffler non-singular kernel," Chaos, Solitons & Fractals, Elsevier, vol. 127(C), pages 400-407.
    2. Heydari, M.H. & Atangana, A., 2019. "A cardinal approach for nonlinear variable-order time fractional Schrödinger equation defined by Atangana–Baleanu–Caputo derivative," Chaos, Solitons & Fractals, Elsevier, vol. 128(C), pages 339-348.
    3. Hosseininia, M. & Heydari, M.H., 2019. "Meshfree moving least squares method for nonlinear variable-order time fractional 2D telegraph equation involving Mittag–Leffler non-singular kernel," Chaos, Solitons & Fractals, Elsevier, vol. 127(C), pages 389-399.
    4. Pho, Kim-Hung & Heydari, M.H. & Tuan, Bui Anh & Mahmoudi, Mohammad Reza, 2020. "Numerical study of nonlinear 2D optimal control problems with multi-term variable-order fractional derivatives in the Atangana-Baleanu-Caputo sense," Chaos, Solitons & Fractals, Elsevier, vol. 134(C).
    5. Ahmed, Hoda F. & Hashem, W.A., 2023. "A fully spectral tau method for a class of linear and nonlinear variable-order time-fractional partial differential equations in multi-dimensions," Mathematics and Computers in Simulation (MATCOM), Elsevier, vol. 214(C), pages 388-408.
    6. Heydari, M. H. & Atangana, A., 2020. "An optimization method based on the generalized Lucas polynomials for variable-order space-time fractional mobile-immobile advection-dispersion equation involving derivatives with non-singular kernels," Chaos, Solitons & Fractals, Elsevier, vol. 132(C).
    7. Fouladi, Somayeh & Dahaghin, Mohammad Shafi, 2022. "Numerical investigation of the variable-order fractional Sobolev equation with non-singular Mittag–Leffler kernel by finite difference and local discontinuous Galerkin methods," Chaos, Solitons & Fractals, Elsevier, vol. 157(C).
    8. Zeid, Samaneh Soradi, 2019. "Approximation methods for solving fractional equations," Chaos, Solitons & Fractals, Elsevier, vol. 125(C), pages 171-193.
    9. Heydari, Mohammad Hossein & Avazzadeh, Zakieh & Haromi, Malih Farzi, 2019. "A wavelet approach for solving multi-term variable-order time fractional diffusion-wave equation," Applied Mathematics and Computation, Elsevier, vol. 341(C), pages 215-228.
    10. Heydari, Mohammad Hossein & Avazzadeh, Zakieh & Yang, Yin, 2019. "A computational method for solving variable-order fractional nonlinear diffusion-wave equation," Applied Mathematics and Computation, Elsevier, vol. 352(C), pages 235-248.
    11. Ayazi, N. & Mokhtary, P. & Moghaddam, B. Parsa, 2024. "Efficiently solving fractional delay differential equations of variable order via an adjusted spectral element approach," Chaos, Solitons & Fractals, Elsevier, vol. 181(C).
    12. Zúñiga-Aguilar, C.J. & Gómez-Aguilar, J.F. & Escobar-Jiménez, R.F. & Romero-Ugalde, H.M., 2019. "A novel method to solve variable-order fractional delay differential equations based in lagrange interpolations," Chaos, Solitons & Fractals, Elsevier, vol. 126(C), pages 266-282.
    13. Owolabi, Kolade M., 2019. "Mathematical modelling and analysis of love dynamics: A fractional approach," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 525(C), pages 849-865.
    14. Owolabi, Kolade M. & Hammouch, Zakia, 2019. "Spatiotemporal patterns in the Belousov–Zhabotinskii reaction systems with Atangana–Baleanu fractional order derivative," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 523(C), pages 1072-1090.
    15. Kumar, Pushpendra & Erturk, Vedat Suat, 2021. "Environmental persistence influences infection dynamics for a butterfly pathogen via new generalised Caputo type fractional derivative," Chaos, Solitons & Fractals, Elsevier, vol. 144(C).
    16. Baghani, Omid, 2022. "SCW-iterative-computational method for solving a wide class of nonlinear fractional optimal control problems with Caputo derivatives," Mathematics and Computers in Simulation (MATCOM), Elsevier, vol. 202(C), pages 540-558.
    17. Taneco-Hernández, M.A. & Morales-Delgado, V.F. & Gómez-Aguilar, J.F., 2019. "Fundamental solutions of the fractional Fresnel equation in the real half-line," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 521(C), pages 807-827.
    18. Kaliraj, K. & Manjula, M. & Ravichandran, C., 2022. "New existence results on nonlocal neutral fractional differential equation in concepts of Caputo derivative with impulsive conditions," Chaos, Solitons & Fractals, Elsevier, vol. 161(C).
    19. Mahmoudi, Mohammad Reza & Baleanu, Dumitru & Mansor, Zulkefli & Tuan, Bui Anh & Pho, Kim-Hung, 2020. "Fuzzy clustering method to compare the spread rate of Covid-19 in the high risks countries," Chaos, Solitons & Fractals, Elsevier, vol. 140(C).
    20. Mostafa M. A. Khater & Aliaa Mahfooz Alabdali, 2021. "Multiple Novels and Accurate Traveling Wave and Numerical Solutions of the (2+1) Dimensional Fisher-Kolmogorov- Petrovskii-Piskunov Equation," Mathematics, MDPI, vol. 9(12), pages 1-13, June.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:chsofr:v:130:y:2020:i:c:s0960077919303364. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Thayer, Thomas R. (email available below). General contact details of provider: https://www.journals.elsevier.com/chaos-solitons-and-fractals .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.