IDEAS home Printed from https://ideas.repec.org/a/eee/chsofr/v146y2021ics0960077921002526.html
   My bibliography  Save this article

A fractional order Zika virus model with Mittag–Leffler kernel

Author

Listed:
  • Begum, Razia
  • Tunç, Osman
  • Khan, Hasib
  • Gulzar, Haseena
  • Khan, Aziz

Abstract

Zika virus is one of the lethal virus which is a threat to humans health. It can be transmitted from human to human, from mosquitos to human, from human to mosquitos. Since there is no vaccine or complete treatment of the Zika viral infection. Therefore, scientists are working on the optimal control strategies. One of the control strategies is the awareness about the spread. In this article, we have presented and analyzed a mathematical model for the Zika virus and have checked the results on long time. The model has closer results to the classical based on our numerical scheme by the help of Lagrange’s interpolation polynomial.

Suggested Citation

  • Begum, Razia & Tunç, Osman & Khan, Hasib & Gulzar, Haseena & Khan, Aziz, 2021. "A fractional order Zika virus model with Mittag–Leffler kernel," Chaos, Solitons & Fractals, Elsevier, vol. 146(C).
  • Handle: RePEc:eee:chsofr:v:146:y:2021:i:c:s0960077921002526
    DOI: 10.1016/j.chaos.2021.110898
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S0960077921002526
    Download Restriction: Full text for ScienceDirect subscribers only

    File URL: https://libkey.io/10.1016/j.chaos.2021.110898?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Abdeljawad, Thabet & Al-Mdallal, Qasem M. & Jarad, Fahd, 2019. "Fractional logistic models in the frame of fractional operators generated by conformable derivatives," Chaos, Solitons & Fractals, Elsevier, vol. 119(C), pages 94-101.
    2. Shah, Kamal & Alqudah, Manar A. & Jarad, Fahd & Abdeljawad, Thabet, 2020. "Semi-analytical study of Pine Wilt Disease model with convex rate under Caputo–Febrizio fractional order derivative," Chaos, Solitons & Fractals, Elsevier, vol. 135(C).
    3. Jarad, Fahd & Abdeljawad, Thabet & Hammouch, Zakia, 2018. "On a class of ordinary differential equations in the frame of Atangana–Baleanu fractional derivative," Chaos, Solitons & Fractals, Elsevier, vol. 117(C), pages 16-20.
    4. Khan, Aziz & Abdeljawad, Thabet & Gómez-Aguilar, J.F. & Khan, Hasib, 2020. "Dynamical study of fractional order mutualism parasitism food web module," Chaos, Solitons & Fractals, Elsevier, vol. 134(C).
    5. Acay, Bahar & Bas, Erdal & Abdeljawad, Thabet, 2020. "Fractional economic models based on market equilibrium in the frame of different type kernels," Chaos, Solitons & Fractals, Elsevier, vol. 130(C).
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Sharma, Naveen & Singh, Ram & Singh, Jagdev & Castillo, Oscar, 2021. "Modeling assumptions, optimal control strategies and mitigation through vaccination to Zika virus," Chaos, Solitons & Fractals, Elsevier, vol. 150(C).
    2. Hasib Khan & Jehad Alzabut & Haseena Gulzar & Osman Tunç & Sandra Pinelas, 2023. "On System of Variable Order Nonlinear p-Laplacian Fractional Differential Equations with Biological Application," Mathematics, MDPI, vol. 11(8), pages 1-17, April.
    3. Addai, Emmanuel & Zhang, Lingling & Ackora-Prah, Joseph & Gordon, Joseph Frank & Asamoah, Joshua Kiddy K. & Essel, John Fiifi, 2022. "Fractal-fractional order dynamics and numerical simulations of a Zika epidemic model with insecticide-treated nets," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 603(C).
    4. Hussain, Shah & Tunç, Osman & Rahman, Ghaus ur & Khan, Hasib & Nadia, Elissa, 2023. "Mathematical analysis of stochastic epidemic model of MERS-corona & application of ergodic theory," Mathematics and Computers in Simulation (MATCOM), Elsevier, vol. 207(C), pages 130-150.
    5. Azhar Iqbal Kashif Butt & Saira Batool & Muhammad Imran & Muneerah Al Nuwairan, 2023. "Design and Analysis of a New COVID-19 Model with Comparative Study of Control Strategies," Mathematics, MDPI, vol. 11(9), pages 1-29, April.
    6. Khan, Hasib & Ahmad, Farooq & Tunç, Osman & Idrees, Muhammad, 2022. "On fractal-fractional Covid-19 mathematical model," Chaos, Solitons & Fractals, Elsevier, vol. 157(C).
    7. Hashem Najafi & Sina Etemad & Nichaphat Patanarapeelert & Joshua Kiddy K. Asamoah & Shahram Rezapour & Thanin Sitthiwirattham, 2022. "A Study on Dynamics of CD4 + T-Cells under the Effect of HIV-1 Infection Based on a Mathematical Fractal-Fractional Model via the Adams-Bashforth Scheme and Newton Polynomials," Mathematics, MDPI, vol. 10(9), pages 1-32, April.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Mashayekhi, S. & Sedaghat, S., 2021. "Fractional model of stem cell population dynamics," Chaos, Solitons & Fractals, Elsevier, vol. 146(C).
    2. Partohaghighi, Mohammad & Akgül, Ali, 2021. "Modelling and simulations of the SEIR and Blood Coagulation systems using Atangana-Baleanu-Caputo derivative," Chaos, Solitons & Fractals, Elsevier, vol. 150(C).
    3. BİLDİK, Necdet & DENİZ, Sinan & SAAD, Khaled M., 2020. "A comparative study on solving fractional cubic isothermal auto-catalytic chemical system via new efficient technique," Chaos, Solitons & Fractals, Elsevier, vol. 132(C).
    4. Khan, Hasib & Khan, Aziz & Jarad, Fahd & Shah, Anwar, 2020. "Existence and data dependence theorems for solutions of an ABC-fractional order impulsive system," Chaos, Solitons & Fractals, Elsevier, vol. 131(C).
    5. Khan, Aziz & Abdeljawad, Thabet & Gómez-Aguilar, J.F. & Khan, Hasib, 2020. "Dynamical study of fractional order mutualism parasitism food web module," Chaos, Solitons & Fractals, Elsevier, vol. 134(C).
    6. Khan, Aziz & Khan, Hasib & Gómez-Aguilar, J.F. & Abdeljawad, Thabet, 2019. "Existence and Hyers-Ulam stability for a nonlinear singular fractional differential equations with Mittag-Leffler kernel," Chaos, Solitons & Fractals, Elsevier, vol. 127(C), pages 422-427.
    7. Kritika, & Agarwal, Ritu & Purohit, Sunil Dutt, 2020. "Mathematical model for anomalous subdiffusion using comformable operator," Chaos, Solitons & Fractals, Elsevier, vol. 140(C).
    8. Ullah, Ihsan & Ahmad, Saeed & Rahman, Mati ur & Arfan, Muhammad, 2021. "Investigation of fractional order tuberculosis (TB) model via Caputo derivative," Chaos, Solitons & Fractals, Elsevier, vol. 142(C).
    9. Ganji, R.M. & Jafari, H. & Baleanu, D., 2020. "A new approach for solving multi variable orders differential equations with Mittag–Leffler kernel," Chaos, Solitons & Fractals, Elsevier, vol. 130(C).
    10. Ilhan, Esin & Veeresha, P. & Baskonus, Haci Mehmet, 2021. "Fractional approach for a mathematical model of atmospheric dynamics of CO2 gas with an efficient method," Chaos, Solitons & Fractals, Elsevier, vol. 152(C).
    11. Rahman, Mati ur & Arfan, Muhammad & Shah, Kamal & Gómez-Aguilar, J.F., 2020. "Investigating a nonlinear dynamical model of COVID-19 disease under fuzzy caputo, random and ABC fractional order derivative," Chaos, Solitons & Fractals, Elsevier, vol. 140(C).
    12. Karaagac, Berat, 2019. "A study on fractional Klein Gordon equation with non-local and non-singular kernel," Chaos, Solitons & Fractals, Elsevier, vol. 126(C), pages 218-229.
    13. Ravichandran, C. & Sowbakiya, V. & Nisar, Kottakkaran Sooppy, 2022. "Study on existence and data dependence results for fractional order differential equations," Chaos, Solitons & Fractals, Elsevier, vol. 160(C).
    14. Fouladi, Somayeh & Dahaghin, Mohammad Shafi, 2022. "Numerical investigation of the variable-order fractional Sobolev equation with non-singular Mittag–Leffler kernel by finite difference and local discontinuous Galerkin methods," Chaos, Solitons & Fractals, Elsevier, vol. 157(C).
    15. Duc, Tran Minh & Van Hoa, Ngo, 2021. "Stabilization of impulsive fractional-order dynamic systems involving the Caputo fractional derivative of variable-order via a linear feedback controller," Chaos, Solitons & Fractals, Elsevier, vol. 153(P2).
    16. Abdalla, Bahaaeldin & Abdeljawad, Thabet, 2019. "On the oscillation of Caputo fractional differential equations with Mittag–Leffler nonsingular kernel," Chaos, Solitons & Fractals, Elsevier, vol. 127(C), pages 173-177.
    17. Ndenda, J.P. & Njagarah, J.B.H. & Shaw, S., 2021. "Role of immunotherapy in tumor-immune interaction: Perspectives from fractional-order modelling and sensitivity analysis," Chaos, Solitons & Fractals, Elsevier, vol. 148(C).
    18. Rihan, F.A. & Al-Mdallal, Q.M. & AlSakaji, H.J. & Hashish, A., 2019. "A fractional-order epidemic model with time-delay and nonlinear incidence rate," Chaos, Solitons & Fractals, Elsevier, vol. 126(C), pages 97-105.
    19. Asjad, Muhammad Imran & Sunthrayuth, Pongsakorn & Ikram, Muhammad Danish & Muhammad, Taseer & Alshomrani, Ali Saleh, 2022. "Analysis of non-singular fractional bioconvection and thermal memory with generalized Mittag-Leffler kernel," Chaos, Solitons & Fractals, Elsevier, vol. 159(C).
    20. Kumar, Ashish & Pandey, Dwijendra N., 2020. "Existence of mild solution of Atangana–Baleanu fractional differential equations with non-instantaneous impulses and with non-local conditions," Chaos, Solitons & Fractals, Elsevier, vol. 132(C).

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:chsofr:v:146:y:2021:i:c:s0960077921002526. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Thayer, Thomas R. (email available below). General contact details of provider: https://www.journals.elsevier.com/chaos-solitons-and-fractals .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.