IDEAS home Printed from https://ideas.repec.org/a/eee/chsofr/v146y2021ics0960077921002733.html
   My bibliography  Save this article

Fractional model of stem cell population dynamics

Author

Listed:
  • Mashayekhi, S.
  • Sedaghat, S.

Abstract

We develop the fractional model of stem cell population dynamics with state-dependent and time-dependent delays. In this model, the stem cell division rate and self-renewal rate are controlled by an external signal, depending on the effects of the environment’s heterogeneity. We quantify a relationship between the fractional derivative order, which shows the effects of the environment’s heterogeneity and stem cell division and stem cell self-renewal rate. We consider a general form of the fractional neutral delay differential equations with state-dependent and time-dependent delay to study this relationship. First, we show the solution’s existence and uniqueness using the fixed point theorem on the Banach space. We define a completely continuous operator on the non-empty closed convex set to use the fixed point theorem on the Banach space and show this operator has a uniquely defined fixed point. Also, we proof the Ulam–Hyers stability to make sure a close exact solution could be reached using the numerical approximation. Then, we develop a new numerical method based on Jacobi polynomials for solving the fractional neutral delay differential equations with state-dependent and time-dependent delay. We use the least-squares approximation of the candidate function to reduce the solution of fractional neutral delay differential equations to a set of algebraic equations and compare the results obtained by using different collocation points. We evaluate the accuracy of the numerical method, theoretically and numerically. We have used the numerical method to evaluate the fractional model’s behavior of stem cell population dynamics and quantify the relationship between the effects of the environment’s heterogeneity and the rate of stem cell division and stem cell self-renewal.

Suggested Citation

  • Mashayekhi, S. & Sedaghat, S., 2021. "Fractional model of stem cell population dynamics," Chaos, Solitons & Fractals, Elsevier, vol. 146(C).
  • Handle: RePEc:eee:chsofr:v:146:y:2021:i:c:s0960077921002733
    DOI: 10.1016/j.chaos.2021.110919
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S0960077921002733
    Download Restriction: Full text for ScienceDirect subscribers only

    File URL: https://libkey.io/10.1016/j.chaos.2021.110919?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Shah, Kamal & Alqudah, Manar A. & Jarad, Fahd & Abdeljawad, Thabet, 2020. "Semi-analytical study of Pine Wilt Disease model with convex rate under Caputo–Febrizio fractional order derivative," Chaos, Solitons & Fractals, Elsevier, vol. 135(C).
    2. Khan, Aziz & Abdeljawad, Thabet & Gómez-Aguilar, J.F. & Khan, Hasib, 2020. "Dynamical study of fractional order mutualism parasitism food web module," Chaos, Solitons & Fractals, Elsevier, vol. 134(C).
    3. Acay, Bahar & Bas, Erdal & Abdeljawad, Thabet, 2020. "Fractional economic models based on market equilibrium in the frame of different type kernels," Chaos, Solitons & Fractals, Elsevier, vol. 130(C).
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Sedaghat, S. & Mashayekhi, S., 2022. "Exploiting delay differential equations solved by Eta functions as suitable mathematical tools for the investigation of thickness controlling in rolling mill," Chaos, Solitons & Fractals, Elsevier, vol. 164(C).

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Begum, Razia & Tunç, Osman & Khan, Hasib & Gulzar, Haseena & Khan, Aziz, 2021. "A fractional order Zika virus model with Mittag–Leffler kernel," Chaos, Solitons & Fractals, Elsevier, vol. 146(C).
    2. Partohaghighi, Mohammad & Akgül, Ali, 2021. "Modelling and simulations of the SEIR and Blood Coagulation systems using Atangana-Baleanu-Caputo derivative," Chaos, Solitons & Fractals, Elsevier, vol. 150(C).
    3. Ullah, Ihsan & Ahmad, Saeed & Rahman, Mati ur & Arfan, Muhammad, 2021. "Investigation of fractional order tuberculosis (TB) model via Caputo derivative," Chaos, Solitons & Fractals, Elsevier, vol. 142(C).
    4. Rahman, Mati ur & Arfan, Muhammad & Shah, Kamal & Gómez-Aguilar, J.F., 2020. "Investigating a nonlinear dynamical model of COVID-19 disease under fuzzy caputo, random and ABC fractional order derivative," Chaos, Solitons & Fractals, Elsevier, vol. 140(C).
    5. Duc, Tran Minh & Van Hoa, Ngo, 2021. "Stabilization of impulsive fractional-order dynamic systems involving the Caputo fractional derivative of variable-order via a linear feedback controller," Chaos, Solitons & Fractals, Elsevier, vol. 153(P2).
    6. Ndenda, J.P. & Njagarah, J.B.H. & Shaw, S., 2021. "Role of immunotherapy in tumor-immune interaction: Perspectives from fractional-order modelling and sensitivity analysis," Chaos, Solitons & Fractals, Elsevier, vol. 148(C).
    7. Abdo, Mohammed S. & Shah, Kamal & Wahash, Hanan A. & Panchal, Satish K., 2020. "On a comprehensive model of the novel coronavirus (COVID-19) under Mittag-Leffler derivative," Chaos, Solitons & Fractals, Elsevier, vol. 135(C).
    8. Zheng, Bibo & Wang, Zhanshan, 2022. "Mittag-Leffler synchronization of fractional-order coupled neural networks with mixed delays," Applied Mathematics and Computation, Elsevier, vol. 430(C).
    9. Singh, Harendra & Baleanu, Dumitru & Singh, Jagdev & Dutta, Hemen, 2021. "Computational study of fractional order smoking model," Chaos, Solitons & Fractals, Elsevier, vol. 142(C).
    10. Rahman, Mati ur & Ahmad, Saeed & Matoog, R.T. & Alshehri, Nawal A. & Khan, Tahir, 2021. "Study on the mathematical modelling of COVID-19 with Caputo-Fabrizio operator," Chaos, Solitons & Fractals, Elsevier, vol. 150(C).
    11. Abdelhamid Mohammed Djaouti & Zareen A. Khan & Muhammad Imran Liaqat & Ashraf Al-Quran, 2024. "Existence, Uniqueness, and Averaging Principle of Fractional Neutral Stochastic Differential Equations in the L p Space with the Framework of the Ψ-Caputo Derivative," Mathematics, MDPI, vol. 12(7), pages 1-21, March.
    12. Acay, Bahar & Inc, Mustafa, 2021. "Fractional modeling of temperature dynamics of a building with singular kernels," Chaos, Solitons & Fractals, Elsevier, vol. 142(C).
    13. Ajay Kumar & Sara Salem Alzaid & Badr Saad T. Alkahtani & Sunil Kumar, 2022. "Complex Dynamic Behaviour of Food Web Model with Generalized Fractional Operator," Mathematics, MDPI, vol. 10(10), pages 1-23, May.
    14. Yusuf, Abdullahi & Acay, Bahar & Mustapha, Umar Tasiu & Inc, Mustafa & Baleanu, Dumitru, 2021. "Mathematical modeling of pine wilt disease with Caputo fractional operator," Chaos, Solitons & Fractals, Elsevier, vol. 143(C).
    15. Chimmula, Vinay Kumar Reddy & Zhang, Lei, 2020. "Time series forecasting of COVID-19 transmission in Canada using LSTM networks," Chaos, Solitons & Fractals, Elsevier, vol. 135(C).
    16. Etemad, Sina & Avci, Ibrahim & Kumar, Pushpendra & Baleanu, Dumitru & Rezapour, Shahram, 2022. "Some novel mathematical analysis on the fractal–fractional model of the AH1N1/09 virus and its generalized Caputo-type version," Chaos, Solitons & Fractals, Elsevier, vol. 162(C).
    17. Mohammadi, Hakimeh & Kumar, Sunil & Rezapour, Shahram & Etemad, Sina, 2021. "A theoretical study of the Caputo–Fabrizio fractional modeling for hearing loss due to Mumps virus with optimal control," Chaos, Solitons & Fractals, Elsevier, vol. 144(C).
    18. Bazán Navarro, Ciro Eduardo & Benazic Tomé, Renato Mario, 2024. "Qualitative behavior in a fractional order IS-LM-AS macroeconomic model with stability analysis," Mathematics and Computers in Simulation (MATCOM), Elsevier, vol. 217(C), pages 425-443.
    19. Ahmad, Saeed & Rahman, Mati ur & Arfan, Muhammad, 2021. "On the analysis of semi-analytical solutions of Hepatitis B epidemic model under the Caputo-Fabrizio operator," Chaos, Solitons & Fractals, Elsevier, vol. 146(C).
    20. Gao, Wei & Veeresha, P. & Baskonus, Haci Mehmet & Prakasha, D. G. & Kumar, Pushpendra, 2020. "A new study of unreported cases of 2019-nCOV epidemic outbreaks," Chaos, Solitons & Fractals, Elsevier, vol. 138(C).

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:chsofr:v:146:y:2021:i:c:s0960077921002733. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Thayer, Thomas R. (email available below). General contact details of provider: https://www.journals.elsevier.com/chaos-solitons-and-fractals .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.