IDEAS home Printed from https://ideas.repec.org/a/eee/chsofr/v150y2021ics0960077921004173.html
   My bibliography  Save this article

Using awareness to Z-control a SEIR model with overexposure: Insights on Covid-19 pandemic

Author

Listed:
  • Lacitignola, Deborah
  • Diele, Fasma

Abstract

In this paper, we use the Z-control approach to get further insight on the role of awareness in the management of epidemics that, just like Covid-19, display a high rate of overexposure because of the large number of asymptomatic people. We focus on a SEIR model including a overexposure mechanism and consider awareness as a time-dependent variable whose dynamics is not assigned a priori. Exploiting the potential of awareness to produce social distancing and self-isolation among susceptibles, we use it as an indirect control on the class of infective individuals and apply the Z-control approach to detect what trend must awareness display over time in order to eradicate the disease. To this aim, we generalize the Z-control procedure to appropriately treat an uncontrolled model with more than two governing equations. Analytical and numerical investigations on the resulting Z-controlled system show its capability in controlling some representative dynamics within both the backward and the forward scenarios. The awareness variable is qualitatively compared to Google Trends data on Covid-19 that are discussed in the perspective of the Z-control approach, inferring qualitative indications in view of the disease control. The cases of Italy and New Zealand in the first phase of the pandemic are analyzed in detail. The theoretical framework of the Z-control approach can hence offer the chance to reflect on the use of Google Trends as a possible indicator of good management of the epidemic.

Suggested Citation

  • Lacitignola, Deborah & Diele, Fasma, 2021. "Using awareness to Z-control a SEIR model with overexposure: Insights on Covid-19 pandemic," Chaos, Solitons & Fractals, Elsevier, vol. 150(C).
  • Handle: RePEc:eee:chsofr:v:150:y:2021:i:c:s0960077921004173
    DOI: 10.1016/j.chaos.2021.111063
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S0960077921004173
    Download Restriction: Full text for ScienceDirect subscribers only

    File URL: https://libkey.io/10.1016/j.chaos.2021.111063?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Mandal, Dibyendu Sekhar & Chekroun, Abdennasser & Samanta, Sudip & Chattopadhyay, Joydev, 2021. "A mathematical study of a crop-pest–natural enemy model with Z-type control," Mathematics and Computers in Simulation (MATCOM), Elsevier, vol. 187(C), pages 468-488.
    2. Fanelli, Duccio & Piazza, Francesco, 2020. "Analysis and forecast of COVID-19 spreading in China, Italy and France," Chaos, Solitons & Fractals, Elsevier, vol. 134(C).
    3. Das, Dhiraj Kumar & Khajanchi, Subhas & Kar, T.K., 2020. "The impact of the media awareness and optimal strategy on the prevalence of tuberculosis," Applied Mathematics and Computation, Elsevier, vol. 366(C).
    4. Lacitignola, Deborah & Saccomandi, Giuseppe, 2021. "Managing awareness can avoid hysteresis in disease spread: an application to coronavirus Covid-19," Chaos, Solitons & Fractals, Elsevier, vol. 144(C).
    5. Senapati, Abhishek & Panday, Pijush & Samanta, Sudip & Chattopadhyay, Joydev, 2020. "Disease control through removal of population using Z-control approach," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 548(C).
    6. Alzahrani, Abdullah K. & Alshomrani, Ali Saleh & Pal, Nikhil & Samanta, Sudip, 2018. "Study of an eco-epidemiological model with Z-type control," Chaos, Solitons & Fractals, Elsevier, vol. 113(C), pages 197-208.
    7. Arora, Vishal S. & McKee, Martin & Stuckler, David, 2019. "Google Trends: Opportunities and limitations in health and health policy research," Health Policy, Elsevier, vol. 123(3), pages 338-341.
    8. Xiaolong Chen & Quanhui Liu & Ruijie Wang & Qing Li & Wei Wang, 2020. "Self-Awareness-Based Resource Allocation Strategy for Containment of Epidemic Spreading," Complexity, Hindawi, vol. 2020, pages 1-12, May.
    9. Kabir, K.M. Ariful & Kuga, Kazuki & Tanimoto, Jun, 2019. "Analysis of SIR epidemic model with information spreading of awareness," Chaos, Solitons & Fractals, Elsevier, vol. 119(C), pages 118-125.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Khatun, Mst Sebi & Das, Samhita & Das, Pritha, 2023. "Dynamics and control of an SITR COVID-19 model with awareness and hospital bed dependency," Chaos, Solitons & Fractals, Elsevier, vol. 175(P1).
    2. Sk, Tahajuddin & Biswas, Santosh & Sardar, Tridip, 2022. "The impact of a power law-induced memory effect on the SARS-CoV-2 transmission," Chaos, Solitons & Fractals, Elsevier, vol. 165(P2).
    3. Buonomo, Bruno & Giacobbe, Andrea, 2023. "Oscillations in SIR behavioural epidemic models: The interplay between behaviour and overexposure to infection," Chaos, Solitons & Fractals, Elsevier, vol. 174(C).
    4. Deborah Lacitignola, 2021. "Handling Hysteresis in a Referral Marketing Campaign with Self-Information. Hints from Epidemics," Mathematics, MDPI, vol. 9(6), pages 1-17, March.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Lacitignola, Deborah & Saccomandi, Giuseppe, 2021. "Managing awareness can avoid hysteresis in disease spread: an application to coronavirus Covid-19," Chaos, Solitons & Fractals, Elsevier, vol. 144(C).
    2. Khatun, Mst Sebi & Das, Samhita & Das, Pritha, 2023. "Dynamics and control of an SITR COVID-19 model with awareness and hospital bed dependency," Chaos, Solitons & Fractals, Elsevier, vol. 175(P1).
    3. Kumar, Arjun & Dubey, Uma S. & Dubey, Balram, 2024. "The impact of social media advertisements and treatments on the dynamics of infectious diseases with optimal control strategies," Mathematics and Computers in Simulation (MATCOM), Elsevier, vol. 219(C), pages 50-86.
    4. Sarkar, Kankan & Khajanchi, Subhas & Nieto, Juan J., 2020. "Modeling and forecasting the COVID-19 pandemic in India," Chaos, Solitons & Fractals, Elsevier, vol. 139(C).
    5. Zhu, Xuzhen & Liu, Yuxin & Wang, Shengfeng & Wang, Ruijie & Chen, Xiaolong & Wang, Wei, 2021. "Allocating resources for epidemic spreading on metapopulation networks," Applied Mathematics and Computation, Elsevier, vol. 411(C).
    6. Kabir, K.M. Ariful & Tanimoto, Jun, 2019. "Dynamical behaviors for vaccination can suppress infectious disease – A game theoretical approach," Chaos, Solitons & Fractals, Elsevier, vol. 123(C), pages 229-239.
    7. Asamoah, Joshua Kiddy K. & Okyere, Eric & Yankson, Ernest & Opoku, Alex Akwasi & Adom-Konadu, Agnes & Acheampong, Edward & Arthur, Yarhands Dissou, 2022. "Non-fractional and fractional mathematical analysis and simulations for Q fever," Chaos, Solitons & Fractals, Elsevier, vol. 156(C).
    8. Zhu, Hongmiao & Jin, Zhen & Yan, Xin, 2023. "A dynamics model of coupling transmission for multiple different knowledge in multiplex networks," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 629(C).
    9. Singhal, Amit & Singh, Pushpendra & Lall, Brejesh & Joshi, Shiv Dutt, 2020. "Modeling and prediction of COVID-19 pandemic using Gaussian mixture model," Chaos, Solitons & Fractals, Elsevier, vol. 138(C).
    10. Cooper, Ian & Mondal, Argha & Antonopoulos, Chris G., 2020. "Dynamic tracking with model-based forecasting for the spread of the COVID-19 pandemic," Chaos, Solitons & Fractals, Elsevier, vol. 139(C).
    11. Huang, Yubo & Wu, Yan & Zhang, Weidong, 2020. "Comprehensive identification and isolation policies have effectively suppressed the spread of COVID-19," Chaos, Solitons & Fractals, Elsevier, vol. 139(C).
    12. Artur Strzelecki, 2020. "Google Medical Update: Why Is the Search Engine Decreasing Visibility of Health and Medical Information Websites?," IJERPH, MDPI, vol. 17(4), pages 1-13, February.
    13. Chen, Yi & Wang, Lianwen & Zhang, Jinhui, 2024. "Global asymptotic stability of an age-structured tuberculosis model: An analytical method to determine kernel coefficients in Lyapunov functional," Chaos, Solitons & Fractals, Elsevier, vol. 181(C).
    14. Chakraborty, Tanujit & Ghosh, Indrajit, 2020. "Real-time forecasts and risk assessment of novel coronavirus (COVID-19) cases: A data-driven analysis," Chaos, Solitons & Fractals, Elsevier, vol. 135(C).
    15. Gaetano Perone, 2020. "An ARIMA model to forecast the spread and the final size of COVID-2019 epidemic in Italy," Health, Econometrics and Data Group (HEDG) Working Papers 20/07, HEDG, c/o Department of Economics, University of York.
    16. Salgotra, Rohit & Gandomi, Mostafa & Gandomi, Amir H., 2020. "Evolutionary modelling of the COVID-19 pandemic in fifteen most affected countries," Chaos, Solitons & Fractals, Elsevier, vol. 140(C).
    17. Bimal Kumar Mishra, 2022. "Stochastic models on the transmission of novel COVID-19," International Journal of System Assurance Engineering and Management, Springer;The Society for Reliability, Engineering Quality and Operations Management (SREQOM),India, and Division of Operation and Maintenance, Lulea University of Technology, Sweden, vol. 13(2), pages 599-603, April.
    18. Han, Zhimin & Wang, Yi & Cao, Jinde, 2023. "Impact of contact heterogeneity on initial growth behavior of an epidemic: Complex network-based approach," Applied Mathematics and Computation, Elsevier, vol. 451(C).
    19. Ashwin Muniyappan & Balamuralitharan Sundarappan & Poongodi Manoharan & Mounir Hamdi & Kaamran Raahemifar & Sami Bourouis & Vijayakumar Varadarajan, 2022. "Stability and Numerical Solutions of Second Wave Mathematical Modeling on COVID-19 and Omicron Outbreak Strategy of Pandemic: Analytical and Error Analysis of Approximate Series Solutions by Using HPM," Mathematics, MDPI, vol. 10(3), pages 1-27, January.
    20. Ndii, Meksianis Z. & Adi, Yudi Ari, 2021. "Understanding the effects of individual awareness and vector controls on malaria transmission dynamics using multiple optimal control," Chaos, Solitons & Fractals, Elsevier, vol. 153(P1).

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:chsofr:v:150:y:2021:i:c:s0960077921004173. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Thayer, Thomas R. (email available below). General contact details of provider: https://www.journals.elsevier.com/chaos-solitons-and-fractals .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.