IDEAS home Printed from https://ideas.repec.org/a/gam/jmathe/v10y2022i3p343-d731776.html
   My bibliography  Save this article

Stability and Numerical Solutions of Second Wave Mathematical Modeling on COVID-19 and Omicron Outbreak Strategy of Pandemic: Analytical and Error Analysis of Approximate Series Solutions by Using HPM

Author

Listed:
  • Ashwin Muniyappan

    (School of Computing Science and Engineering, VIT Bhopal University, Bhopal-Indore Highway, Sehore 466114, India)

  • Balamuralitharan Sundarappan

    (Department of Mathematics, Bharath Institute of Higher Education and Research, Chennai 600073, India)

  • Poongodi Manoharan

    (College of Science and Engineering, Hamad Bin Khalifa University, Doha 602024, Qatar)

  • Mounir Hamdi

    (College of Science and Engineering, Hamad Bin Khalifa University, Doha 602024, Qatar)

  • Kaamran Raahemifar

    (College of Information Sciences and Technology, Data Science and Artificial Intelligence Program, Penn State University, State College, PA 16801, USA
    School of Optometry and Vision Science, Faculty of Science, Department of Chemical Engineering, University of Waterloo, 200 University Ave W, Waterloo, ON N2L 3G1, Canada
    Faculty of Engineering, University of Waterloo, 200 University Ave W, Waterloo, ON N2L 3G1, Canada)

  • Sami Bourouis

    (Department of Information Technology, College of Computers and Information Technology, Taif University, P.O. Box 11099, Taif 21944, Saudi Arabia)

  • Vijayakumar Varadarajan

    (Department of Computer Science and Engineering, University of New South Wales, Sydney 56890, Australia)

Abstract

This paper deals with the mathematical modeling of the second wave of COVID-19 and verifies the current Omicron variant pandemic data in India. We also we discussed such as uniformly bounded of the system, Equilibrium analysis and basic reproduction number R 0 . We calculated the analytic solutions by HPM (homotopy perturbation method) and used Mathematica 12 software for numerical analysis up to 8th order approximation. It checked the error values of the approximation while the system has residual error, absolute error and h curve initial derivation of square error at up to 8th order approximation. The basic reproduction number ranges between 0.8454 and 2.0317 to form numerical simulation, it helps to identify the whole system fluctuations. Finally, our proposed model validated (from real life data) the highly affected five states of COVID-19 and the Omicron variant. The algorithm guidelines are used for international arrivals, with Omicron variant cases updated by the Union Health Ministry in January 2022. Right now, the third wave is underway in India, and we conclude that it may peak by the end of May 2022.

Suggested Citation

  • Ashwin Muniyappan & Balamuralitharan Sundarappan & Poongodi Manoharan & Mounir Hamdi & Kaamran Raahemifar & Sami Bourouis & Vijayakumar Varadarajan, 2022. "Stability and Numerical Solutions of Second Wave Mathematical Modeling on COVID-19 and Omicron Outbreak Strategy of Pandemic: Analytical and Error Analysis of Approximate Series Solutions by Using HPM," Mathematics, MDPI, vol. 10(3), pages 1-27, January.
  • Handle: RePEc:gam:jmathe:v:10:y:2022:i:3:p:343-:d:731776
    as

    Download full text from publisher

    File URL: https://www.mdpi.com/2227-7390/10/3/343/pdf
    Download Restriction: no

    File URL: https://www.mdpi.com/2227-7390/10/3/343/
    Download Restriction: no
    ---><---

    References listed on IDEAS

    as
    1. Fanelli, Duccio & Piazza, Francesco, 2020. "Analysis and forecast of COVID-19 spreading in China, Italy and France," Chaos, Solitons & Fractals, Elsevier, vol. 134(C).
    2. Chakraborty, Tanujit & Ghosh, Indrajit, 2020. "Real-time forecasts and risk assessment of novel coronavirus (COVID-19) cases: A data-driven analysis," Chaos, Solitons & Fractals, Elsevier, vol. 135(C).
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Juan Guamán & Karen Portilla & Paúl Arias-Muñoz & Gabriel Jácome & Santiago Cabrera & Luis Álvarez & Bolívar Batallas & Hernán Cadena & Juan Carlos García, 2023. "Multivariate Forecasting Model for COVID-19 Spread Based on Possible Scenarios in Ecuador," Mathematics, MDPI, vol. 11(23), pages 1-13, November.
    2. Tamil Selvi P. & Kishore Balasubramaniam & Vidhya S. & Jayapandian N. & Ramya K. & Poongodi M. & Mounir Hamdi & Godwin Brown Tunze, 2022. "Social Network User Profiling With Multilayer Semantic Modeling Using Ego Network," International Journal of Information Technology and Web Engineering (IJITWE), IGI Global, vol. 17(1), pages 1-14, January.
    3. Dharmendra Kumar Singh Singh & Nithya N. & Rahunathan L. & Preyal Sanghavi & Ravirajsinh Sajubha Vaghela & Poongodi Manoharan & Mounir Hamdi & Godwin Brown Tunze, 2022. "Social Network Analysis for Precise Friend Suggestion for Twitter by Associating Multiple Networks Using ML," International Journal of Information Technology and Web Engineering (IJITWE), IGI Global, vol. 17(1), pages 1-11, January.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Koutsellis, Themistoklis & Nikas, Alexandros, 2020. "A predictive model and country risk assessment for COVID-19: An application of the Limited Failure Population concept," Chaos, Solitons & Fractals, Elsevier, vol. 140(C).
    2. Gaetano Perone, 2022. "Comparison of ARIMA, ETS, NNAR, TBATS and hybrid models to forecast the second wave of COVID-19 hospitalizations in Italy," The European Journal of Health Economics, Springer;Deutsche Gesellschaft für Gesundheitsökonomie (DGGÖ), vol. 23(6), pages 917-940, August.
    3. Perone, G., 2020. "Comparison of ARIMA, ETS, NNAR and hybrid models to forecast the second wave of COVID-19 hospitalizations in Italy," Health, Econometrics and Data Group (HEDG) Working Papers 20/18, HEDG, c/o Department of Economics, University of York.
    4. Sergio Contreras-Espinoza & Francisco Novoa-Muñoz & Szabolcs Blazsek & Pedro Vidal & Christian Caamaño-Carrillo, 2022. "COVID-19 Active Case Forecasts in Latin American Countries Using Score-Driven Models," Mathematics, MDPI, vol. 11(1), pages 1-17, December.
    5. Mandal, Manotosh & Jana, Soovoojeet & Nandi, Swapan Kumar & Khatua, Anupam & Adak, Sayani & Kar, T.K., 2020. "A model based study on the dynamics of COVID-19: Prediction and control," Chaos, Solitons & Fractals, Elsevier, vol. 136(C).
    6. Vaishnav, Vaibhav & Vajpai, Jayashri, 2020. "Assessment of impact of relaxation in lockdown and forecast of preparation for combating COVID-19 pandemic in India using Group Method of Data Handling," Chaos, Solitons & Fractals, Elsevier, vol. 140(C).
    7. Castillo, Oscar & Melin, Patricia, 2020. "Forecasting of COVID-19 time series for countries in the world based on a hybrid approach combining the fractal dimension and fuzzy logic," Chaos, Solitons & Fractals, Elsevier, vol. 140(C).
    8. František Božek & Irena Tušer, 2021. "Measures for Ensuring Sustainability during the Current Spreading of Coronaviruses in the Czech Republic," Sustainability, MDPI, vol. 13(12), pages 1-22, June.
    9. Abu Reza Md. Towfiqul Islam & Md. Hasanuzzaman & Md. Abul Kalam Azad & Roquia Salam & Farzana Zannat Toshi & Md. Sanjid Islam Khan & G. M. Monirul Alam & Sobhy M. Ibrahim, 2021. "Effect of meteorological factors on COVID-19 cases in Bangladesh," Environment, Development and Sustainability: A Multidisciplinary Approach to the Theory and Practice of Sustainable Development, Springer, vol. 23(6), pages 9139-9162, June.
    10. Singhal, Amit & Singh, Pushpendra & Lall, Brejesh & Joshi, Shiv Dutt, 2020. "Modeling and prediction of COVID-19 pandemic using Gaussian mixture model," Chaos, Solitons & Fractals, Elsevier, vol. 138(C).
    11. Cooper, Ian & Mondal, Argha & Antonopoulos, Chris G., 2020. "Dynamic tracking with model-based forecasting for the spread of the COVID-19 pandemic," Chaos, Solitons & Fractals, Elsevier, vol. 139(C).
    12. Cooper, Ian & Mondal, Argha & Antonopoulos, Chris G., 2020. "A SIR model assumption for the spread of COVID-19 in different communities," Chaos, Solitons & Fractals, Elsevier, vol. 139(C).
    13. Song, Jialu & Xie, Hujin & Gao, Bingbing & Zhong, Yongmin & Gu, Chengfan & Choi, Kup-Sze, 2021. "Maximum likelihood-based extended Kalman filter for COVID-19 prediction," Chaos, Solitons & Fractals, Elsevier, vol. 146(C).
    14. Huang, Yubo & Wu, Yan & Zhang, Weidong, 2020. "Comprehensive identification and isolation policies have effectively suppressed the spread of COVID-19," Chaos, Solitons & Fractals, Elsevier, vol. 139(C).
    15. Crokidakis, Nuno, 2020. "COVID-19 spreading in Rio de Janeiro, Brazil: Do the policies of social isolation really work?," Chaos, Solitons & Fractals, Elsevier, vol. 136(C).
    16. Chakraborty, Tanujit & Ghosh, Indrajit, 2020. "Real-time forecasts and risk assessment of novel coronavirus (COVID-19) cases: A data-driven analysis," Chaos, Solitons & Fractals, Elsevier, vol. 135(C).
    17. Gaetano Perone, 2020. "An ARIMA model to forecast the spread and the final size of COVID-2019 epidemic in Italy," Health, Econometrics and Data Group (HEDG) Working Papers 20/07, HEDG, c/o Department of Economics, University of York.
    18. Luca Bonacini & Giovanni Gallo & Fabrizio Patriarca, 2021. "Identifying policy challenges of COVID-19 in hardly reliable data and judging the success of lockdown measures," Journal of Population Economics, Springer;European Society for Population Economics, vol. 34(1), pages 275-301, January.
    19. Moghari, Somaye & Ghorani, Maryam, 2022. "A symbiosis between cellular automata and dynamic weighted multigraph with application on virus spread modeling," Chaos, Solitons & Fractals, Elsevier, vol. 155(C).
    20. Srinka Basu & Sugata Sen, 2023. "COVID 19 Pandemic, Socio-Economic Behaviour and Infection Characteristics: An Inter-Country Predictive Study Using Deep Learning," Computational Economics, Springer;Society for Computational Economics, vol. 61(2), pages 645-676, February.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:gam:jmathe:v:10:y:2022:i:3:p:343-:d:731776. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: MDPI Indexing Manager (email available below). General contact details of provider: https://www.mdpi.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.