IDEAS home Printed from https://ideas.repec.org/a/eee/phsmap/v629y2023ics0378437123007549.html
   My bibliography  Save this article

A dynamics model of coupling transmission for multiple different knowledge in multiplex networks

Author

Listed:
  • Zhu, Hongmiao
  • Jin, Zhen
  • Yan, Xin

Abstract

Firstly, this paper regards a typical system composed of the individuals in an organization and the coupling propagation of multiple different knowledge between them through informal random communication as a set of multiple-layer multiplex networks. This system composed of these individuals and the propagation of one type of knowledge among them through random communication can be abstracted as a sub-network in our multiplex networks. In addition, considering the reciprocal effect of the dissemination of a certain type of knowledge between formal organizational training and informal random communication, this paper proposes a novel S1I1R1 - S2I2R2 - ... - SmImRm - ... - SMIMRM dynamics model of coupling transmission for multiple knowledge in our multiplex networks with consideration of the mechanism of autonomous learning. Our model also considers the interplay between the spread of each type of knowledge among these individuals and the spread of other types of knowledge among them. Then, this paper calculates R0m to distinguish whether any one type of knowledge Km is continuously disseminated by these employees. After this, the paper fits the actual data of dissemination process of multiple knowledge using the proposed models and verifies that the models fit well with the actual data. Finally, this paper conducts numerical simulations of many different types of knowledge dissemination in an organization, and draws the following conclusions: Due to the limited time, attention and psychological energy required for a person to communicate and disseminate various knowledge, if the average number of times a certain type of knowledge is communicated by each individual within a unit of time is too large, then the average number of times that any other type of knowledge is communicated by each individual within a unit of time will decrease and the transmission rate of any other type of knowledge in each informal random communication between individuals will also decrease. It will lead to a negative impact on the spread of any other type of knowledge, and it may even make all other types of knowledge gradually disappear in the organization.

Suggested Citation

  • Zhu, Hongmiao & Jin, Zhen & Yan, Xin, 2023. "A dynamics model of coupling transmission for multiple different knowledge in multiplex networks," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 629(C).
  • Handle: RePEc:eee:phsmap:v:629:y:2023:i:c:s0378437123007549
    DOI: 10.1016/j.physa.2023.129199
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S0378437123007549
    Download Restriction: Full text for ScienceDirect subscribers only. Journal offers the option of making the article available online on Science direct for a fee of $3,000

    File URL: https://libkey.io/10.1016/j.physa.2023.129199?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Zhu, Hongmiao & Jin, Zhen & Yan, Xin, 2022. "A dynamics model of two kinds of knowledge transmission on duplex networks," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 608(P1).
    2. Zan, Yongli & Wu, Jianliang & Li, Ping & Yu, Qinglin, 2014. "SICR rumor spreading model in complex networks: Counterattack and self-resistance," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 405(C), pages 159-170.
    3. Cowan, Robin & Jonard, Nicolas, 2004. "Network structure and the diffusion of knowledge," Journal of Economic Dynamics and Control, Elsevier, vol. 28(8), pages 1557-1575, June.
    4. Zhang, Yaming & Su, Yanyuan & Weigang, Li & Liu, Haiou, 2019. "Interacting model of rumor propagation and behavior spreading in multiplex networks," Chaos, Solitons & Fractals, Elsevier, vol. 121(C), pages 168-177.
    5. Liao, Shi-Gen & Yi, Shu-Ping, 2021. "Modeling and analyzing knowledge transmission process considering free-riding behavior of knowledge acquisition: A waterborne disease approach," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 569(C).
    6. Zhuang, Enyu & Chen, Guanrong & Feng, Gang, 2011. "A network model of knowledge accumulation through diffusion and upgrade," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 390(13), pages 2582-2592.
    7. Rollins, Kimberly & Lyke, Audrey, 1998. "The Case for Diminishing Marginal Existence Values," Journal of Environmental Economics and Management, Elsevier, vol. 36(3), pages 324-344, November.
    8. Li, Jingjing & Zhang, Yumei & Man, Jiayu & Zhou, Yun & Wu, Xiaojun, 2017. "SISL and SIRL: Two knowledge dissemination models with leader nodes on cooperative learning networks," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 468(C), pages 740-749.
    9. Argote, Linda & Ingram, Paul, 2000. "Knowledge Transfer: A Basis for Competitive Advantage in Firms," Organizational Behavior and Human Decision Processes, Elsevier, vol. 82(1), pages 150-169, May.
    10. Gao, Bo & Deng, Zhenghong & Zhao, Dawei, 2016. "Competing spreading processes and immunization in multiplex networks," Chaos, Solitons & Fractals, Elsevier, vol. 93(C), pages 175-181.
    11. Kiss, Istvan Z. & Broom, Mark & Craze, Paul G. & Rafols, Ismael, 2010. "Can epidemic models describe the diffusion of topics across disciplines?," Journal of Informetrics, Elsevier, vol. 4(1), pages 74-82.
    12. Wang, Haiying & Wang, Jun & Small, Michael & Moore, Jack Murdoch, 2019. "Review mechanism promotes knowledge transmission in complex networks," Applied Mathematics and Computation, Elsevier, vol. 340(C), pages 113-125.
    13. Ma, Weicai & Zhang, Peng & Zhao, Xin & Xue, Leyang, 2022. "The coupled dynamics of information dissemination and SEIR-based epidemic spreading in multiplex networks," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 588(C).
    14. Li, Jiarong & Jiang, Haijun & Yu, Zhiyong & Hu, Cheng, 2019. "Dynamical analysis of rumor spreading model in homogeneous complex networks," Applied Mathematics and Computation, Elsevier, vol. 359(C), pages 374-385.
    15. Zan, Yongli, 2018. "DSIR double-rumors spreading model in complex networks," Chaos, Solitons & Fractals, Elsevier, vol. 110(C), pages 191-202.
    16. Jinxian Li & Yanping Hu & Zhen Jin, 2019. "Rumor Spreading of an SIHR Model in Heterogeneous Networks Based on Probability Generating Function," Complexity, Hindawi, vol. 2019, pages 1-15, June.
    17. Kabir, K.M. Ariful & Kuga, Kazuki & Tanimoto, Jun, 2019. "Analysis of SIR epidemic model with information spreading of awareness," Chaos, Solitons & Fractals, Elsevier, vol. 119(C), pages 118-125.
    18. Cao, Bin & Han, Shui-hua & Jin, Zhen, 2016. "Modeling of knowledge transmission by considering the level of forgetfulness in complex networks," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 451(C), pages 277-287.
    19. Zhu, Hongmiao & Wang, Yumie & Yan, Xin & Jin, Zhen, 2022. "Research on knowledge dissemination model in the multiplex network with enterprise social media and offline transmission routes," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 587(C).
    20. Wang, Haiying & Wang, Jun & Ding, Liting & Wei, Wei, 2017. "Knowledge transmission model with consideration of self-learning mechanism in complex networks," Applied Mathematics and Computation, Elsevier, vol. 304(C), pages 83-92.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Zheng, Ying & Wu, Yayong & Jiang, Guo-Ping, 2024. "Exploring synchronizability of complex dynamical networks from edges perspective," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 638(C).

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Zhu, Hongmiao & Jin, Zhen, 2023. "A dynamics model of knowledge dissemination in a WeChat Group from perspective of duplex networks," Applied Mathematics and Computation, Elsevier, vol. 454(C).
    2. Liao, Shi-Gen & Yi, Shu-Ping, 2021. "Modeling and analysis knowledge transmission process in complex networks by considering internalization mechanism," Chaos, Solitons & Fractals, Elsevier, vol. 143(C).
    3. Wang, Haiying & Moore, Jack Murdoch & Wang, Jun & Small, Michael, 2021. "The distinct roles of initial transmission and retransmission in the persistence of knowledge in complex networks," Applied Mathematics and Computation, Elsevier, vol. 392(C).
    4. Liao, Shi-Gen & Yi, Shu-Ping, 2021. "Modeling and analyzing knowledge transmission process considering free-riding behavior of knowledge acquisition: A waterborne disease approach," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 569(C).
    5. Wang, Haiying & Wang, Jun & Small, Michael & Moore, Jack Murdoch, 2019. "Review mechanism promotes knowledge transmission in complex networks," Applied Mathematics and Computation, Elsevier, vol. 340(C), pages 113-125.
    6. Zhu, He & Ma, Jing, 2018. "Knowledge diffusion in complex networks by considering time-varying information channels," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 494(C), pages 225-235.
    7. Wang, Haiying & Wang, Jun & Small, Michael, 2018. "Knowledge transmission model with differing initial transmission and retransmission process," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 507(C), pages 478-488.
    8. Zhu, Hongmiao & Jin, Zhen & Yan, Xin, 2022. "A dynamics model of two kinds of knowledge transmission on duplex networks," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 608(P1).
    9. Huo, Liang’an & Chen, Sijing, 2020. "Rumor propagation model with consideration of scientific knowledge level and social reinforcement in heterogeneous network," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 559(C).
    10. Wang, Sixin & Mei, Jun & Xia, Dan & Yang, Zhanying & Hu, Junhao, 2022. "Finite-time optimal feedback control mechanism for knowledge transmission in complex networks via model predictive control," Chaos, Solitons & Fractals, Elsevier, vol. 164(C).
    11. Song, Le & Ma, Yinghong, 2022. "Evaluating tacit knowledge diffusion with algebra matrix algorithm based social networks," Applied Mathematics and Computation, Elsevier, vol. 428(C).
    12. Xiaodan Kong & Qi Xu & Tao Zhu, 2019. "Dynamic Evolution of Knowledge Sharing Behavior among Enterprises in the Cluster Innovation Network Based on Evolutionary Game Theory," Sustainability, MDPI, vol. 12(1), pages 1-23, December.
    13. Ioannidis, Evangelos & Varsakelis, Nikos & Antoniou, Ioannis, 2018. "Experts in Knowledge Networks: Central Positioning and Intelligent Selections," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 509(C), pages 890-905.
    14. Zenghui Yue & Haiyun Xu & Guoting Yuan & Yan Qi, 2022. "Modeling knowledge diffusion in the disciplinary citation network based on differential dynamics," Scientometrics, Springer;Akadémiai Kiadó, vol. 127(12), pages 7593-7613, December.
    15. Ioannidis, Evangelos & Varsakelis, Nikos & Antoniou, Ioannis, 2017. "False Beliefs in Unreliable Knowledge Networks," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 470(C), pages 275-295.
    16. Wang, Chuanbiao & Liu, Ruiying & Wang, Yan, 2023. "The spread dynamics model of the interaction between rumors and derivative rumors in emergencies under the control strategy," Chaos, Solitons & Fractals, Elsevier, vol. 175(P2).
    17. Mei, Jun & Wang, Sixin & Xia, Dan & Hu, Junhao, 2022. "Global stability and optimal control analysis of a knowledge transmission model in multilayer networks," Chaos, Solitons & Fractals, Elsevier, vol. 164(C).
    18. Hongying Xiao & Zhaofeng Li & Yuanyuan Zhang & Hong Lin & Yuxiao Zhao, 2023. "A Dual Rumor Spreading Model with Consideration of Fans versus Ordinary People," Mathematics, MDPI, vol. 11(13), pages 1-14, July.
    19. Zhang, Yaming & Su, Yanyuan & Weigang, Li & Liu, Haiou, 2019. "Interacting model of rumor propagation and behavior spreading in multiplex networks," Chaos, Solitons & Fractals, Elsevier, vol. 121(C), pages 168-177.
    20. Jianhong Chen & Hongcai Ma & Shan Yang, 2023. "SEIOR Rumor Propagation Model Considering Hesitating Mechanism and Different Rumor-Refuting Ways in Complex Networks," Mathematics, MDPI, vol. 11(2), pages 1-22, January.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:phsmap:v:629:y:2023:i:c:s0378437123007549. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.journals.elsevier.com/physica-a-statistical-mechpplications/ .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.