IDEAS home Printed from https://ideas.repec.org/a/eee/chsofr/v147y2021ics0960077921003313.html
   My bibliography  Save this article

A numerical method for solving fractional delay differential equations based on the operational matrix method

Author

Listed:
  • Syam, Muhammed I.
  • Sharadga, Mwaffag
  • Hashim, I.

Abstract

The Modified Operational Matrix method (MOMM) has proved to be a reliable and efficient algorithm for solving fractional delay equations. However, no convergence results are known in the literature. The aim of this paper is to derive the MOMM and to show its efficiency. Numerical examples are studied to illustrate the efficiency of the proposed method.

Suggested Citation

  • Syam, Muhammed I. & Sharadga, Mwaffag & Hashim, I., 2021. "A numerical method for solving fractional delay differential equations based on the operational matrix method," Chaos, Solitons & Fractals, Elsevier, vol. 147(C).
  • Handle: RePEc:eee:chsofr:v:147:y:2021:i:c:s0960077921003313
    DOI: 10.1016/j.chaos.2021.110977
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S0960077921003313
    Download Restriction: Full text for ScienceDirect subscribers only

    File URL: https://libkey.io/10.1016/j.chaos.2021.110977?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Baleanu, Dumitru & Wu, Guo–Cheng & Zeng, Sheng–Da, 2017. "Chaos analysis and asymptotic stability of generalized Caputo fractional differential equations," Chaos, Solitons & Fractals, Elsevier, vol. 102(C), pages 99-105.
    2. Zhou, Yong & Peng, Li & Ahmad, Bashir & Alsaedi, Ahmed, 2017. "Energy methods for fractional Navier–Stokes equations," Chaos, Solitons & Fractals, Elsevier, vol. 102(C), pages 78-85.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Sondos M. Syam & Z. Siri & Sami H. Altoum & R. Md. Kasmani, 2023. "An Efficient Numerical Approach for Solving Systems of Fractional Problems and Their Applications in Science," Mathematics, MDPI, vol. 11(14), pages 1-21, July.
    2. Jaradat, Imad & Alquran, Marwan & Sulaiman, Tukur A. & Yusuf, Abdullahi, 2022. "Analytic simulation of the synergy of spatial-temporal memory indices with proportional time delay," Chaos, Solitons & Fractals, Elsevier, vol. 156(C).

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Verma, S. & Viswanathan, P., 2018. "A note on Katugampola fractional calculus and fractal dimensions," Applied Mathematics and Computation, Elsevier, vol. 339(C), pages 220-230.
    2. Benjemaa, Mondher, 2018. "Taylor’s formula involving generalized fractional derivatives," Applied Mathematics and Computation, Elsevier, vol. 335(C), pages 182-195.
    3. Yang, Zhanwen & Li, Qi & Yao, Zichen, 2023. "A stability analysis for multi-term fractional delay differential equations with higher order," Chaos, Solitons & Fractals, Elsevier, vol. 167(C).
    4. Sarita Kumari & Rajesh K. Pandey & Ravi P. Agarwal, 2023. "High-Order Approximation to Generalized Caputo Derivatives and Generalized Fractional Advection–Diffusion Equations," Mathematics, MDPI, vol. 11(5), pages 1-24, February.
    5. Ren, Jing & Zhai, Chengbo, 2020. "Stability analysis for generalized fractional differential systems and applications," Chaos, Solitons & Fractals, Elsevier, vol. 139(C).
    6. Liu, Yiyu & Zhu, Yuanguo & Lu, Ziqiang, 2021. "On Caputo-Hadamard uncertain fractional differential equations," Chaos, Solitons & Fractals, Elsevier, vol. 146(C).
    7. Akinyemi, Lanre & Şenol, Mehmet & Iyiola, Olaniyi S., 2021. "Exact solutions of the generalized multidimensional mathematical physics models via sub-equation method," Mathematics and Computers in Simulation (MATCOM), Elsevier, vol. 182(C), pages 211-233.
    8. Faten Fakher Abdulnabi & Hiba F. Al-Janaby & Firas Ghanim & Alina Alb Lupaș, 2023. "Some Results on Third-Order Differential Subordination and Differential Superordination for Analytic Functions Using a Fractional Differential Operator," Mathematics, MDPI, vol. 11(18), pages 1-14, September.
    9. Omar Kahouli & Assaad Jmal & Omar Naifar & Abdelhameed M. Nagy & Abdellatif Ben Makhlouf, 2022. "New Result for the Analysis of Katugampola Fractional-Order Systems—Application to Identification Problems," Mathematics, MDPI, vol. 10(11), pages 1-17, May.
    10. Veeresha, P. & Baskonus, Haci Mehmet & Prakasha, D.G. & Gao, Wei & Yel, Gulnur, 2020. "Regarding new numerical solution of fractional Schistosomiasis disease arising in biological phenomena," Chaos, Solitons & Fractals, Elsevier, vol. 133(C).
    11. Abdelfattah Mustafa & Reda S. Salama & Mokhtar Mohamed, 2023. "Analysis of Generalized Nonlinear Quadrature for Novel Fractional-Order Chaotic Systems Using Sinc Shape Function," Mathematics, MDPI, vol. 11(8), pages 1-17, April.
    12. Pundikala Veeresha & Doddabhadrappla Gowda Prakasha & Dumitru Baleanu, 2019. "An Efficient Numerical Technique for the Nonlinear Fractional Kolmogorov–Petrovskii–Piskunov Equation," Mathematics, MDPI, vol. 7(3), pages 1-18, March.
    13. Nabi, Khondoker Nazmoon & Abboubakar, Hamadjam & Kumar, Pushpendra, 2020. "Forecasting of COVID-19 pandemic: From integer derivatives to fractional derivatives," Chaos, Solitons & Fractals, Elsevier, vol. 141(C).
    14. Mousavi, Yashar & Alfi, Alireza, 2018. "Fractional calculus-based firefly algorithm applied to parameter estimation of chaotic systems," Chaos, Solitons & Fractals, Elsevier, vol. 114(C), pages 202-215.
    15. Ran, Jie & Li, Yu-Qin & Xiong, Yi-Bin, 2022. "On the dynamics of fractional q-deformation chaotic map," Applied Mathematics and Computation, Elsevier, vol. 424(C).
    16. Malagi, Naveen S. & Veeresha, P. & Prasannakumara, B.C. & Prasanna, G.D. & Prakasha, D.G., 2021. "A new computational technique for the analytic treatment of time-fractional Emden–Fowler equations," Mathematics and Computers in Simulation (MATCOM), Elsevier, vol. 190(C), pages 362-376.
    17. Gao, Wei & Veeresha, P. & Prakasha, D.G. & Baskonus, Haci Mehmet & Yel, Gulnur, 2020. "New approach for the model describing the deathly disease in pregnant women using Mittag-Leffler function," Chaos, Solitons & Fractals, Elsevier, vol. 134(C).
    18. Samir A. El-Tantawy & Rasool Shah & Albandari W. Alrowaily & Nehad Ali Shah & Jae Dong Chung & Sherif. M. E. Ismaeel, 2023. "A Comparative Study of the Fractional-Order Belousov–Zhabotinsky System," Mathematics, MDPI, vol. 11(7), pages 1-15, April.
    19. Liu, Song & Yang, Ran & Li, Xiaoyan & Xiao, Jian, 2021. "Global attractiveness and consensus for Riemann–Liouville’s nonlinear fractional systems with mixed time-delays," Chaos, Solitons & Fractals, Elsevier, vol. 143(C).
    20. Zhang, Meihui & Jia, Jinhong & Zheng, Xiangcheng, 2023. "Numerical approximation and fast implementation to a generalized distributed-order time-fractional option pricing model," Chaos, Solitons & Fractals, Elsevier, vol. 170(C).

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:chsofr:v:147:y:2021:i:c:s0960077921003313. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Thayer, Thomas R. (email available below). General contact details of provider: https://www.journals.elsevier.com/chaos-solitons-and-fractals .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.