IDEAS home Printed from https://ideas.repec.org/a/eee/chsofr/v139y2020ics0960077920304070.html
   My bibliography  Save this article

Stability analysis for generalized fractional differential systems and applications

Author

Listed:
  • Ren, Jing
  • Zhai, Chengbo

Abstract

This paper shows solicitude for the stability analysis issue of a class of generalized fractional differential systems via fractional comparison principle and Lyapunov direct method. With the concept of (Generalized) Mittag-Leffler (M-L) stability given, we first establish a new framework to consider the global M-L stability of generalized fractional differential systems with or without time-delay, in which new stability criterion is achieved by some novel differential inequalities satisfied by the fractional derivative of Lyapunov functions. Second, through the employment of less conservative comparison principle for the generalized fractional system, a sufficient theorem for the (Generalized) M-L stability is derived. Third, a generalized fractional memristor-based impulsive neural network is investigated to illustrate the proposed stability theory, this model is more general which includes a memristor-based Caputo fractional neural network or common Hopfield neural network as special cases. In the end, two simple numerical examples are listed to affirm the theoretical findings.

Suggested Citation

  • Ren, Jing & Zhai, Chengbo, 2020. "Stability analysis for generalized fractional differential systems and applications," Chaos, Solitons & Fractals, Elsevier, vol. 139(C).
  • Handle: RePEc:eee:chsofr:v:139:y:2020:i:c:s0960077920304070
    DOI: 10.1016/j.chaos.2020.110009
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S0960077920304070
    Download Restriction: Full text for ScienceDirect subscribers only

    File URL: https://libkey.io/10.1016/j.chaos.2020.110009?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Liu, Kui & Wang, JinRong & Zhou, Yong & O’Regan, Donal, 2020. "Hyers–Ulam stability and existence of solutions for fractional differential equations with Mittag–Leffler kernel," Chaos, Solitons & Fractals, Elsevier, vol. 132(C).
    2. Shuo Zhang & Yongguang Yu & Wei Hu, 2014. "Robust Stability Analysis of Fractional-Order Hopfield Neural Networks with Parameter Uncertainties," Mathematical Problems in Engineering, Hindawi, vol. 2014, pages 1-14, April.
    3. Yang, Dan & Wang, JinRong & O’Regan, D., 2018. "A class of nonlinear non-instantaneous impulsive differential equations involving parameters and fractional order," Applied Mathematics and Computation, Elsevier, vol. 321(C), pages 654-671.
    4. Li, Hui & Kao, YongGui, 2019. "Mittag-Leffler stability for a new coupled system of fractional-order differential equations with impulses," Applied Mathematics and Computation, Elsevier, vol. 361(C), pages 22-31.
    5. Baleanu, Dumitru & Wu, Guo–Cheng & Zeng, Sheng–Da, 2017. "Chaos analysis and asymptotic stability of generalized Caputo fractional differential equations," Chaos, Solitons & Fractals, Elsevier, vol. 102(C), pages 99-105.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Oscar Martínez-Fuentes & Fidel Meléndez-Vázquez & Guillermo Fernández-Anaya & José Francisco Gómez-Aguilar, 2021. "Analysis of Fractional-Order Nonlinear Dynamic Systems with General Analytic Kernels: Lyapunov Stability and Inequalities," Mathematics, MDPI, vol. 9(17), pages 1-29, August.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Verma, S. & Viswanathan, P., 2018. "A note on Katugampola fractional calculus and fractal dimensions," Applied Mathematics and Computation, Elsevier, vol. 339(C), pages 220-230.
    2. Benjemaa, Mondher, 2018. "Taylor’s formula involving generalized fractional derivatives," Applied Mathematics and Computation, Elsevier, vol. 335(C), pages 182-195.
    3. Hou, Mimi & Xi, Xuan-Xuan & Zhou, Xian-Feng, 2021. "Boundary control of a fractional reaction-diffusion equation coupled with fractional ordinary differential equations with delay," Applied Mathematics and Computation, Elsevier, vol. 406(C).
    4. Yang, Zhanwen & Li, Qi & Yao, Zichen, 2023. "A stability analysis for multi-term fractional delay differential equations with higher order," Chaos, Solitons & Fractals, Elsevier, vol. 167(C).
    5. Sarita Kumari & Rajesh K. Pandey & Ravi P. Agarwal, 2023. "High-Order Approximation to Generalized Caputo Derivatives and Generalized Fractional Advection–Diffusion Equations," Mathematics, MDPI, vol. 11(5), pages 1-24, February.
    6. Liu, Yiyu & Zhu, Yuanguo & Lu, Ziqiang, 2021. "On Caputo-Hadamard uncertain fractional differential equations," Chaos, Solitons & Fractals, Elsevier, vol. 146(C).
    7. Usman Riaz & Akbar Zada & Zeeshan Ali & Ioan-Lucian Popa & Shahram Rezapour & Sina Etemad, 2021. "On a Riemann–Liouville Type Implicit Coupled System via Generalized Boundary Conditions," Mathematics, MDPI, vol. 9(11), pages 1-22, May.
    8. Ravi P. Agarwal & Snezhana Hristova & Donal O’Regan, 2023. "Inequalities for Riemann–Liouville-Type Fractional Derivatives of Convex Lyapunov Functions and Applications to Stability Theory," Mathematics, MDPI, vol. 11(18), pages 1-23, September.
    9. Akinyemi, Lanre & Şenol, Mehmet & Iyiola, Olaniyi S., 2021. "Exact solutions of the generalized multidimensional mathematical physics models via sub-equation method," Mathematics and Computers in Simulation (MATCOM), Elsevier, vol. 182(C), pages 211-233.
    10. Faten Fakher Abdulnabi & Hiba F. Al-Janaby & Firas Ghanim & Alina Alb Lupaș, 2023. "Some Results on Third-Order Differential Subordination and Differential Superordination for Analytic Functions Using a Fractional Differential Operator," Mathematics, MDPI, vol. 11(18), pages 1-14, September.
    11. Shuyi Wang & Fanwei Meng, 2021. "Ulam Stability of n -th Order Delay Integro-Differential Equations," Mathematics, MDPI, vol. 9(23), pages 1-17, November.
    12. Omar Kahouli & Assaad Jmal & Omar Naifar & Abdelhameed M. Nagy & Abdellatif Ben Makhlouf, 2022. "New Result for the Analysis of Katugampola Fractional-Order Systems—Application to Identification Problems," Mathematics, MDPI, vol. 10(11), pages 1-17, May.
    13. Li, Hui & Kao, YongGui & Stamova, Ivanka & Shao, Chuntao, 2021. "Global asymptotic stability and S-asymptotic ω-periodicity of impulsive non-autonomous fractional-order neural networks," Applied Mathematics and Computation, Elsevier, vol. 410(C).
    14. Veeresha, P. & Baskonus, Haci Mehmet & Prakasha, D.G. & Gao, Wei & Yel, Gulnur, 2020. "Regarding new numerical solution of fractional Schistosomiasis disease arising in biological phenomena," Chaos, Solitons & Fractals, Elsevier, vol. 133(C).
    15. Shang, Weiying & Zhang, Weiwei & Chen, Dingyuan & Cao, Jinde, 2023. "New criteria of finite time synchronization of fractional-order quaternion-valued neural networks with time delay," Applied Mathematics and Computation, Elsevier, vol. 436(C).
    16. Osman Tunç, 2024. "New Results on the Ulam–Hyers–Mittag–Leffler Stability of Caputo Fractional-Order Delay Differential Equations," Mathematics, MDPI, vol. 12(9), pages 1-15, April.
    17. Selvam, Anjapuli Panneer & Govindaraj, Venkatesan, 2024. "Investigation of controllability and stability of fractional dynamical systems with delay in control," Mathematics and Computers in Simulation (MATCOM), Elsevier, vol. 220(C), pages 89-104.
    18. Meng, Zhijun & Yi, Mingxu & Huang, Jun & Song, Lei, 2018. "Numerical solutions of nonlinear fractional differential equations by alternative Legendre polynomials," Applied Mathematics and Computation, Elsevier, vol. 336(C), pages 454-464.
    19. Li, Mengmeng & Wang, JinRong, 2022. "Existence results and Ulam type stability for conformable fractional oscillating system with pure delay," Chaos, Solitons & Fractals, Elsevier, vol. 161(C).
    20. Wang, Xue & Luo, Danfeng & Zhu, Quanxin, 2022. "Ulam-Hyers stability of caputo type fuzzy fractional differential equations with time-delays," Chaos, Solitons & Fractals, Elsevier, vol. 156(C).

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:chsofr:v:139:y:2020:i:c:s0960077920304070. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Thayer, Thomas R. (email available below). General contact details of provider: https://www.journals.elsevier.com/chaos-solitons-and-fractals .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.