IDEAS home Printed from https://ideas.repec.org/a/eee/apmaco/v339y2018icp220-230.html
   My bibliography  Save this article

A note on Katugampola fractional calculus and fractal dimensions

Author

Listed:
  • Verma, S.
  • Viswanathan, P.

Abstract

The goal of this paper is to study the Katugampola fractional integral of a continuous function of bounded variation defined on a closed bounded interval. We note that the Katugampola fractional integral of a function shares some analytical properties such as boundedness, continuity and bounded variation of the function defining it. Consequently, we deduce that fractal dimensions – Minkowski dimension and Hausdorff dimension – of the graph of the Katugampola fractional integral of a continuous function of bounded variation are one. A natural question then arises is whether there exists a continuous function which is not of bounded variation with its graph having fractal dimensions one. In the last part of the article, we construct a continuous function, which is not of bounded variation and for which the graph has fractal dimensions one. The construction enunciated herein includes previous constructions found in the recent literature as special cases. The article also hints at an upper bound for the upper box dimension of the graph of the Katugampola fractional derivative of a continuously differentiable function.

Suggested Citation

  • Verma, S. & Viswanathan, P., 2018. "A note on Katugampola fractional calculus and fractal dimensions," Applied Mathematics and Computation, Elsevier, vol. 339(C), pages 220-230.
  • Handle: RePEc:eee:apmaco:v:339:y:2018:i:c:p:220-230
    DOI: 10.1016/j.amc.2018.07.035
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S0096300318306003
    Download Restriction: Full text for ScienceDirect subscribers only

    File URL: https://libkey.io/10.1016/j.amc.2018.07.035?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Zeng, Shengda & Baleanu, Dumitru & Bai, Yunru & Wu, Guocheng, 2017. "Fractional differential equations of Caputo–Katugampola type and numerical solutions," Applied Mathematics and Computation, Elsevier, vol. 315(C), pages 549-554.
    2. Baleanu, Dumitru & Wu, Guo–Cheng & Zeng, Sheng–Da, 2017. "Chaos analysis and asymptotic stability of generalized Caputo fractional differential equations," Chaos, Solitons & Fractals, Elsevier, vol. 102(C), pages 99-105.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Costa, F.S. & Oliveira, D.S. & Rodrigues, F.G. & de Oliveira, E.C., 2019. "The fractional space–time radial diffusion equation in terms of the Fox’s H-function," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 515(C), pages 403-418.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Kadak, Ugur, 2022. "Max-product type multivariate sampling operators and applications to image processing," Chaos, Solitons & Fractals, Elsevier, vol. 157(C).
    2. Benjemaa, Mondher, 2018. "Taylor’s formula involving generalized fractional derivatives," Applied Mathematics and Computation, Elsevier, vol. 335(C), pages 182-195.
    3. Yang, Zhanwen & Li, Qi & Yao, Zichen, 2023. "A stability analysis for multi-term fractional delay differential equations with higher order," Chaos, Solitons & Fractals, Elsevier, vol. 167(C).
    4. Sarita Kumari & Rajesh K. Pandey & Ravi P. Agarwal, 2023. "High-Order Approximation to Generalized Caputo Derivatives and Generalized Fractional Advection–Diffusion Equations," Mathematics, MDPI, vol. 11(5), pages 1-24, February.
    5. Ren, Jing & Zhai, Chengbo, 2020. "Stability analysis for generalized fractional differential systems and applications," Chaos, Solitons & Fractals, Elsevier, vol. 139(C).
    6. Liu, Yiyu & Zhu, Yuanguo & Lu, Ziqiang, 2021. "On Caputo-Hadamard uncertain fractional differential equations," Chaos, Solitons & Fractals, Elsevier, vol. 146(C).
    7. Akinyemi, Lanre & Şenol, Mehmet & Iyiola, Olaniyi S., 2021. "Exact solutions of the generalized multidimensional mathematical physics models via sub-equation method," Mathematics and Computers in Simulation (MATCOM), Elsevier, vol. 182(C), pages 211-233.
    8. Faten Fakher Abdulnabi & Hiba F. Al-Janaby & Firas Ghanim & Alina Alb Lupaș, 2023. "Some Results on Third-Order Differential Subordination and Differential Superordination for Analytic Functions Using a Fractional Differential Operator," Mathematics, MDPI, vol. 11(18), pages 1-14, September.
    9. Omar Kahouli & Assaad Jmal & Omar Naifar & Abdelhameed M. Nagy & Abdellatif Ben Makhlouf, 2022. "New Result for the Analysis of Katugampola Fractional-Order Systems—Application to Identification Problems," Mathematics, MDPI, vol. 10(11), pages 1-17, May.
    10. Veeresha, P. & Baskonus, Haci Mehmet & Prakasha, D.G. & Gao, Wei & Yel, Gulnur, 2020. "Regarding new numerical solution of fractional Schistosomiasis disease arising in biological phenomena," Chaos, Solitons & Fractals, Elsevier, vol. 133(C).
    11. Zhang, Tao & Lu, Zhong-rong & Liu, Ji-ke & Chen, Yan-mao & Liu, Guang, 2023. "Parameter estimation of linear fractional-order system from laplace domain data," Applied Mathematics and Computation, Elsevier, vol. 438(C).
    12. Abdelfattah Mustafa & Reda S. Salama & Mokhtar Mohamed, 2023. "Analysis of Generalized Nonlinear Quadrature for Novel Fractional-Order Chaotic Systems Using Sinc Shape Function," Mathematics, MDPI, vol. 11(8), pages 1-17, April.
    13. Syam, Muhammed I. & Sharadga, Mwaffag & Hashim, I., 2021. "A numerical method for solving fractional delay differential equations based on the operational matrix method," Chaos, Solitons & Fractals, Elsevier, vol. 147(C).
    14. Sivalingam, S M & Kumar, Pushpendra & Trinh, Hieu & Govindaraj, V., 2024. "A novel L1-Predictor-Corrector method for the numerical solution of the generalized-Caputo type fractional differential equations," Mathematics and Computers in Simulation (MATCOM), Elsevier, vol. 220(C), pages 462-480.
    15. Wang, Zhe & Xue, Dingyu & Pan, Feng, 2021. "Observer-based robust control for singular switched fractional order systems subject to actuator saturation," Applied Mathematics and Computation, Elsevier, vol. 411(C).
    16. Pundikala Veeresha & Doddabhadrappla Gowda Prakasha & Dumitru Baleanu, 2019. "An Efficient Numerical Technique for the Nonlinear Fractional Kolmogorov–Petrovskii–Piskunov Equation," Mathematics, MDPI, vol. 7(3), pages 1-18, March.
    17. Nabi, Khondoker Nazmoon & Abboubakar, Hamadjam & Kumar, Pushpendra, 2020. "Forecasting of COVID-19 pandemic: From integer derivatives to fractional derivatives," Chaos, Solitons & Fractals, Elsevier, vol. 141(C).
    18. Mousavi, Yashar & Alfi, Alireza, 2018. "Fractional calculus-based firefly algorithm applied to parameter estimation of chaotic systems," Chaos, Solitons & Fractals, Elsevier, vol. 114(C), pages 202-215.
    19. Ran, Jie & Li, Yu-Qin & Xiong, Yi-Bin, 2022. "On the dynamics of fractional q-deformation chaotic map," Applied Mathematics and Computation, Elsevier, vol. 424(C).
    20. Malagi, Naveen S. & Veeresha, P. & Prasannakumara, B.C. & Prasanna, G.D. & Prakasha, D.G., 2021. "A new computational technique for the analytic treatment of time-fractional Emden–Fowler equations," Mathematics and Computers in Simulation (MATCOM), Elsevier, vol. 190(C), pages 362-376.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:apmaco:v:339:y:2018:i:c:p:220-230. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: https://www.journals.elsevier.com/applied-mathematics-and-computation .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.