IDEAS home Printed from https://ideas.repec.org/a/eee/apmaco/v424y2022ics0096300322001394.html
   My bibliography  Save this article

On the dynamics of fractional q-deformation chaotic map

Author

Listed:
  • Ran, Jie
  • Li, Yu-Qin
  • Xiong, Yi-Bin

Abstract

In this paper, the dynamical behaviors of fractional q-deformation chaotic map are analyzed. Firstly, the fractional q-deformation chaotic map is proposed by employing the Caputo delta difference operator. Secondly, the rich dynamical behaviors, such as numerically stable period (NSP) attractor, quasi-periodic attractor, strange nonchaotic attractor, and chaotic attractor, of the proposed map are discussed by utilizing bifurcation diagram, phase diagram, and 0–1 test. Thirdly, two controllers are designed to study the chaos control and synchronization of the fractional q-deformation chaotic map. Finally, numerical simulations are presented to demonstrate the findings.

Suggested Citation

  • Ran, Jie & Li, Yu-Qin & Xiong, Yi-Bin, 2022. "On the dynamics of fractional q-deformation chaotic map," Applied Mathematics and Computation, Elsevier, vol. 424(C).
  • Handle: RePEc:eee:apmaco:v:424:y:2022:i:c:s0096300322001394
    DOI: 10.1016/j.amc.2022.127053
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S0096300322001394
    Download Restriction: Full text for ScienceDirect subscribers only

    File URL: https://libkey.io/10.1016/j.amc.2022.127053?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Luo, Cheng & Liu, Bao-Qing & Hou, Hu-Shuang, 2021. "Fractional chaotic maps with q–deformation," Applied Mathematics and Computation, Elsevier, vol. 393(C).
    2. Baleanu, Dumitru & Wu, Guo–Cheng & Zeng, Sheng–Da, 2017. "Chaos analysis and asymptotic stability of generalized Caputo fractional differential equations," Chaos, Solitons & Fractals, Elsevier, vol. 102(C), pages 99-105.
    3. Marius-F. Danca & Nikolay Kuznetsov, 2021. "Hidden Strange Nonchaotic Attractors," Mathematics, MDPI, vol. 9(6), pages 1-19, March.
    4. M. Higazy & George Maria Selvam & R. Janagaraj, 2021. "Chaotic Dynamics Of A Novel 2d Discrete Fractional Order Ushiki Map," FRACTALS (fractals), World Scientific Publishing Co. Pte. Ltd., vol. 29(08), pages 1-11, December.
    5. Khennaoui, Amina-Aicha & Ouannas, Adel & Bendoukha, Samir & Grassi, Giuseppe & Lozi, René Pierre & Pham, Viet-Thanh, 2019. "On fractional–order discrete–time systems: Chaos, stabilization and synchronization," Chaos, Solitons & Fractals, Elsevier, vol. 119(C), pages 150-162.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Vignesh, D. & He, Shaobo & Banerjee, Santo, 2023. "Modelling discrete time fractional Rucklidge system with complex state variables and its synchronization," Applied Mathematics and Computation, Elsevier, vol. 455(C).
    2. Wang, Yupin & Li, Xiaodi & Wang, Da & Liu, Shutang, 2022. "A brief note on fractal dynamics of fractional Mandelbrot sets," Applied Mathematics and Computation, Elsevier, vol. 432(C).
    3. Wang, Yupin, 2023. "Fractional quantum Julia set," Applied Mathematics and Computation, Elsevier, vol. 453(C).
    4. Yao, Yu & Wu, Li-Bing, 2022. "Backstepping control for fractional discrete-time systems," Applied Mathematics and Computation, Elsevier, vol. 434(C).

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Verma, S. & Viswanathan, P., 2018. "A note on Katugampola fractional calculus and fractal dimensions," Applied Mathematics and Computation, Elsevier, vol. 339(C), pages 220-230.
    2. Syam, Muhammed I. & Sharadga, Mwaffag & Hashim, I., 2021. "A numerical method for solving fractional delay differential equations based on the operational matrix method," Chaos, Solitons & Fractals, Elsevier, vol. 147(C).
    3. Mayada Abualhomos & Abderrahmane Abbes & Gharib Mousa Gharib & Abdallah Shihadeh & Maha S. Al Soudi & Ahmed Atallah Alsaraireh & Adel Ouannas, 2023. "Bifurcation, Hidden Chaos, Entropy and Control in Hénon-Based Fractional Memristor Map with Commensurate and Incommensurate Orders," Mathematics, MDPI, vol. 11(19), pages 1-19, October.
    4. Benjemaa, Mondher, 2018. "Taylor’s formula involving generalized fractional derivatives," Applied Mathematics and Computation, Elsevier, vol. 335(C), pages 182-195.
    5. Dutta, Maitreyee & Roy, Binoy Krishna, 2020. "A new fractional-order system displaying coexisting multiwing attractors; its synchronisation and circuit simulation," Chaos, Solitons & Fractals, Elsevier, vol. 130(C).
    6. Wang, Yupin, 2023. "Fractional quantum Julia set," Applied Mathematics and Computation, Elsevier, vol. 453(C).
    7. Yang, Zhanwen & Li, Qi & Yao, Zichen, 2023. "A stability analysis for multi-term fractional delay differential equations with higher order," Chaos, Solitons & Fractals, Elsevier, vol. 167(C).
    8. Yamauchi, Atsushi & Ito, Koichi & Shibasaki, Shota & Namba, Toshiyuki, 2023. "Continuous irregular dynamics with multiple neutral trajectories permit species coexistence in competitive communities," Theoretical Population Biology, Elsevier, vol. 149(C), pages 39-47.
    9. Sarita Kumari & Rajesh K. Pandey & Ravi P. Agarwal, 2023. "High-Order Approximation to Generalized Caputo Derivatives and Generalized Fractional Advection–Diffusion Equations," Mathematics, MDPI, vol. 11(5), pages 1-24, February.
    10. Ren, Jing & Zhai, Chengbo, 2020. "Stability analysis for generalized fractional differential systems and applications," Chaos, Solitons & Fractals, Elsevier, vol. 139(C).
    11. Pundikala Veeresha & Doddabhadrappla Gowda Prakasha & Dumitru Baleanu, 2019. "An Efficient Numerical Technique for the Nonlinear Fractional Kolmogorov–Petrovskii–Piskunov Equation," Mathematics, MDPI, vol. 7(3), pages 1-18, March.
    12. Nabi, Khondoker Nazmoon & Abboubakar, Hamadjam & Kumar, Pushpendra, 2020. "Forecasting of COVID-19 pandemic: From integer derivatives to fractional derivatives," Chaos, Solitons & Fractals, Elsevier, vol. 141(C).
    13. Mousavi, Yashar & Alfi, Alireza, 2018. "Fractional calculus-based firefly algorithm applied to parameter estimation of chaotic systems," Chaos, Solitons & Fractals, Elsevier, vol. 114(C), pages 202-215.
    14. Zhang, Fangfang & Zhang, Shuaihu & Chen, Guanrong & Li, Chunbiao & Li, Zhengfeng & Pan, Changchun, 2022. "Special attractors and dynamic transport of the hybrid-order complex Lorenz system," Chaos, Solitons & Fractals, Elsevier, vol. 164(C).
    15. Pakhare, Sumit S. & Bhalekar, Sachin & Gade, Prashant M., 2022. "Synchronization in coupled integer and fractional-order maps," Chaos, Solitons & Fractals, Elsevier, vol. 156(C).
    16. Liu, Yiyu & Zhu, Yuanguo & Lu, Ziqiang, 2021. "On Caputo-Hadamard uncertain fractional differential equations," Chaos, Solitons & Fractals, Elsevier, vol. 146(C).
    17. Wang, Lingyu & Sun, Kehui & Peng, Yuexi & He, Shaobo, 2020. "Chaos and complexity in a fractional-order higher-dimensional multicavity chaotic map," Chaos, Solitons & Fractals, Elsevier, vol. 131(C).
    18. Malagi, Naveen S. & Veeresha, P. & Prasannakumara, B.C. & Prasanna, G.D. & Prakasha, D.G., 2021. "A new computational technique for the analytic treatment of time-fractional Emden–Fowler equations," Mathematics and Computers in Simulation (MATCOM), Elsevier, vol. 190(C), pages 362-376.
    19. Lu, Xiaoling & Sun, Weihua, 2024. "Control and synchronization of Julia sets of discrete fractional Ising models," Chaos, Solitons & Fractals, Elsevier, vol. 180(C).
    20. Asir, M. Paul & Thamilmaran, K. & Prasad, Awadhesh & Feudel, Ulrike & Kuznetsov, N.V. & Shrimali, Manish Dev, 2023. "Hidden strange nonchaotic dynamics in a non-autonomous model," Chaos, Solitons & Fractals, Elsevier, vol. 168(C).

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:apmaco:v:424:y:2022:i:c:s0096300322001394. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: https://www.journals.elsevier.com/applied-mathematics-and-computation .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.