IDEAS home Printed from https://ideas.repec.org/a/gam/jmathe/v11y2023i7p1751-d1117304.html
   My bibliography  Save this article

A Comparative Study of the Fractional-Order Belousov–Zhabotinsky System

Author

Listed:
  • Samir A. El-Tantawy

    (Department of Physics, Faculty of Science, Port Said University, Port Said 42521, Egypt
    Research Center for Physics (RCP), Department of Physics, Faculty of Science and Arts, Al-Mikhwah, Al-Baha University, Al-Baha 1988, Saudi Arabia
    These authors contributed equally to this work and are co-first authors.)

  • Rasool Shah

    (Department of Mathematics, Abdul Wali Khan University Mardan, Mardan 23200, Pakistan)

  • Albandari W. Alrowaily

    (Department of Physics, College of Science, Princess Nourah bint Abdulrahman University, P.O. Box 84428, Riyadh 11671, Saudi Arabia)

  • Nehad Ali Shah

    (Department of Mechanical Engineering, Sejong University, Seoul 05006, Republic of Korea
    These authors contributed equally to this work and are co-first authors.)

  • Jae Dong Chung

    (Department of Mechanical Engineering, Sejong University, Seoul 05006, Republic of Korea)

  • Sherif. M. E. Ismaeel

    (Department of Physics, College of Science and Humanities in Al-Kharj, Prince Sattam Bin Abdulaziz University, Al-Kharj 11942, Saudi Arabia
    Department of Physics, Faculty of Science, Ain Shams University, Cairo 11566, Egypt)

Abstract

In this article, we present a modified strategy that combines the residual power series method with the Laplace transformation and a novel iterative technique for generating a series solution to the fractional nonlinear Belousov–Zhabotinsky (BZ) system. The proposed techniques use the Laurent series in their development. The new procedures’ advantages include the accuracy and speed in obtaining exact/approximate solutions. The suggested approach examines the fractional nonlinear BZ system that describes flow motion in a pipe.

Suggested Citation

  • Samir A. El-Tantawy & Rasool Shah & Albandari W. Alrowaily & Nehad Ali Shah & Jae Dong Chung & Sherif. M. E. Ismaeel, 2023. "A Comparative Study of the Fractional-Order Belousov–Zhabotinsky System," Mathematics, MDPI, vol. 11(7), pages 1-15, April.
  • Handle: RePEc:gam:jmathe:v:11:y:2023:i:7:p:1751-:d:1117304
    as

    Download full text from publisher

    File URL: https://www.mdpi.com/2227-7390/11/7/1751/pdf
    Download Restriction: no

    File URL: https://www.mdpi.com/2227-7390/11/7/1751/
    Download Restriction: no
    ---><---

    References listed on IDEAS

    as
    1. Omar Abu Arqub & Ahmad El-Ajou & A. Sami Bataineh & I. Hashim, 2013. "A Representation of the Exact Solution of Generalized Lane-Emden Equations Using a New Analytical Method," Abstract and Applied Analysis, Hindawi, vol. 2013, pages 1-10, July.
    2. Scalas, Enrico & Gorenflo, Rudolf & Mainardi, Francesco, 2000. "Fractional calculus and continuous-time finance," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 284(1), pages 376-384.
    3. El-Ajou, Ahmad & Abu Arqub, Omar & Momani, Shaher & Baleanu, Dumitru & Alsaedi, Ahmed, 2015. "A novel expansion iterative method for solving linear partial differential equations of fractional order," Applied Mathematics and Computation, Elsevier, vol. 257(C), pages 119-133.
    4. Mohammed Kbiri Alaoui & Kamsing Nonlaopon & Ahmed M. Zidan & Adnan Khan & Rasool Shah, 2022. "Analytical Investigation of Fractional-Order Cahn–Hilliard and Gardner Equations Using Two Novel Techniques," Mathematics, MDPI, vol. 10(10), pages 1-19, May.
    5. M. Mossa Al-Sawalha & Ravi P. Agarwal & Rasool Shah & Osama Y. Ababneh & Wajaree Weera, 2022. "A Reliable Way to Deal with Fractional-Order Equations That Describe the Unsteady Flow of a Polytropic Gas," Mathematics, MDPI, vol. 10(13), pages 1-13, June.
    6. Kashkari, Bothayna S. & El-Tantawy, S.A. & Salas, Alvaro H. & El-Sherif, L.S., 2020. "Homotopy perturbation method for studying dissipative nonplanar solitons in an electronegative complex plasma," Chaos, Solitons & Fractals, Elsevier, vol. 130(C).
    7. Li, Yuanlu & Liu, Fawang & Turner, Ian W. & Li, Tao, 2018. "Time-fractional diffusion equation for signal smoothing," Applied Mathematics and Computation, Elsevier, vol. 326(C), pages 108-116.
    8. Mainardi, Francesco & Raberto, Marco & Gorenflo, Rudolf & Scalas, Enrico, 2000. "Fractional calculus and continuous-time finance II: the waiting-time distribution," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 287(3), pages 468-481.
    9. El-Tantawy, S.A. & Alharbey, R.A. & Salas, Alvaro H., 2022. "Novel approximate analytical and numerical cylindrical rogue wave and breathers solutions: An application to electronegative plasma," Chaos, Solitons & Fractals, Elsevier, vol. 155(C).
    10. Omar Abu Arqub & Zaer Abo-Hammour & Ramzi Al-Badarneh & Shaher Momani, 2013. "A Reliable Analytical Method for Solving Higher-Order Initial Value Problems," Discrete Dynamics in Nature and Society, Hindawi, vol. 2013, pages 1-12, December.
    11. Amin, Rohul & Shah, Kamal & Asif, Muhammad & Khan, Imran, 2021. "A computational algorithm for the numerical solution of fractional order delay differential equations," Applied Mathematics and Computation, Elsevier, vol. 402(C).
    12. Baleanu, Dumitru & Wu, Guo–Cheng & Zeng, Sheng–Da, 2017. "Chaos analysis and asymptotic stability of generalized Caputo fractional differential equations," Chaos, Solitons & Fractals, Elsevier, vol. 102(C), pages 99-105.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Karimov, Artur & Kopets, Ekaterina & Karimov, Timur & Almjasheva, Oksana & Arlyapov, Viacheslav & Butusov, Denis, 2023. "Empirically developed model of the stirring-controlled Belousov–Zhabotinsky reaction," Chaos, Solitons & Fractals, Elsevier, vol. 176(C).

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Dubey, Ved Prakash & Singh, Jagdev & Alshehri, Ahmed M. & Dubey, Sarvesh & Kumar, Devendra, 2022. "Forecasting the behavior of fractional order Bloch equations appearing in NMR flow via a hybrid computational technique," Chaos, Solitons & Fractals, Elsevier, vol. 164(C).
    2. Marseguerra, Marzio & Zoia, Andrea, 2008. "Pre-asymptotic corrections to fractional diffusion equations," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 387(12), pages 2668-2674.
    3. Zheng, Guang-Hui & Zhang, Quan-Guo, 2018. "Solving the backward problem for space-fractional diffusion equation by a fractional Tikhonov regularization method," Mathematics and Computers in Simulation (MATCOM), Elsevier, vol. 148(C), pages 37-47.
    4. Scalas, Enrico & Kaizoji, Taisei & Kirchler, Michael & Huber, Jürgen & Tedeschi, Alessandra, 2006. "Waiting times between orders and trades in double-auction markets," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 366(C), pages 463-471.
    5. Álvaro Cartea & Thilo Meyer-Brandis, 2010. "How Duration Between Trades of Underlying Securities Affects Option Prices," Review of Finance, European Finance Association, vol. 14(4), pages 749-785.
    6. Saberi Zafarghandi, Fahimeh & Mohammadi, Maryam & Babolian, Esmail & Javadi, Shahnam, 2019. "Radial basis functions method for solving the fractional diffusion equations," Applied Mathematics and Computation, Elsevier, vol. 342(C), pages 224-246.
    7. G. Fern'andez-Anaya & L. A. Quezada-T'ellez & B. Nu~nez-Zavala & D. Brun-Battistini, 2019. "Katugampola Generalized Conformal Derivative Approach to Inada Conditions and Solow-Swan Economic Growth Model," Papers 1907.00130, arXiv.org.
    8. Ya Qin & Adnan Khan & Izaz Ali & Maysaa Al Qurashi & Hassan Khan & Rasool Shah & Dumitru Baleanu, 2020. "An Efficient Analytical Approach for the Solution of Certain Fractional-Order Dynamical Systems," Energies, MDPI, vol. 13(11), pages 1-14, May.
    9. Scalas, Enrico & Gallegati, Mauro & Guerci, Eric & Mas, David & Tedeschi, Alessandra, 2006. "Growth and allocation of resources in economics: The agent-based approach," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 370(1), pages 86-90.
    10. Jorge E. Macías-Díaz, 2019. "Numerically Efficient Methods for Variational Fractional Wave Equations: An Explicit Four-Step Scheme," Mathematics, MDPI, vol. 7(11), pages 1-27, November.
    11. Boukhouima, Adnane & Hattaf, Khalid & Lotfi, El Mehdi & Mahrouf, Marouane & Torres, Delfim F.M. & Yousfi, Noura, 2020. "Lyapunov functions for fractional-order systems in biology: Methods and applications," Chaos, Solitons & Fractals, Elsevier, vol. 140(C).
    12. Hussam Aljarrah & Mohammad Alaroud & Anuar Ishak & Maslina Darus, 2022. "Approximate Solution of Nonlinear Time-Fractional PDEs by Laplace Residual Power Series Method," Mathematics, MDPI, vol. 10(12), pages 1-16, June.
    13. Hayashi, Katsuhiko & Kaizoji, Taisei & Pichl, Lukáš, 2007. "Correlation patterns of NIKKEI index constituents," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 383(1), pages 16-21.
    14. Jiang, Zhi-Qiang & Chen, Wei & Zhou, Wei-Xing, 2009. "Detrended fluctuation analysis of intertrade durations," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 388(4), pages 433-440.
    15. Enrico Scalas & Rudolf Gorenflo & Hugh Luckock & Francesco Mainardi & Maurizio Mantelli & Marco Raberto, 2004. "Anomalous waiting times in high-frequency financial data," Quantitative Finance, Taylor & Francis Journals, vol. 4(6), pages 695-702.
    16. Hosseininia, M. & Heydari, M.H., 2019. "Meshfree moving least squares method for nonlinear variable-order time fractional 2D telegraph equation involving Mittag–Leffler non-singular kernel," Chaos, Solitons & Fractals, Elsevier, vol. 127(C), pages 389-399.
    17. Gu, Hui & Liang, Jin-Rong & Zhang, Yun-Xiu, 2012. "Time-changed geometric fractional Brownian motion and option pricing with transaction costs," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 391(15), pages 3971-3977.
    18. Ali Balcı, Mehmet, 2017. "Time fractional capital-induced labor migration model," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 477(C), pages 91-98.
    19. Berardi, Luca & Serva, Maurizio, 2005. "Time and foreign exchange markets," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 353(C), pages 403-412.
    20. Masoliver, Jaume & Montero, Miquel & Perello, Josep & Weiss, George H., 2006. "The continuous time random walk formalism in financial markets," Journal of Economic Behavior & Organization, Elsevier, vol. 61(4), pages 577-598, December.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:gam:jmathe:v:11:y:2023:i:7:p:1751-:d:1117304. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: MDPI Indexing Manager (email available below). General contact details of provider: https://www.mdpi.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.