IDEAS home Printed from https://ideas.repec.org/a/gam/jmathe/v11y2023i8p1932-d1127762.html
   My bibliography  Save this article

Analysis of Generalized Nonlinear Quadrature for Novel Fractional-Order Chaotic Systems Using Sinc Shape Function

Author

Listed:
  • Abdelfattah Mustafa

    (Department of Mathematics, Faculty of Science, Islamic University of Madinah, Madinah 42351, Saudi Arabia
    Department of Mathematics, Faculty of Science, Mansoura University, Mansoura 35516, Egypt)

  • Reda S. Salama

    (Basic Science Department, Faculty of Engineering, Delta University for Science and Technology, Gamasa 11152, Egypt)

  • Mokhtar Mohamed

    (Basic Science Department, Faculty of Engineering, Delta University for Science and Technology, Gamasa 11152, Egypt)

Abstract

This paper introduces the generalized fractional differential quadrature method, which is based on the generalized Caputo type and is used for the first time to solve nonlinear fractional differential equations. One of the effective shape functions of this method is the Cardinal Sine shape function, which is used in combination with the fractional operator of the generalized Caputo kind to convert nonlinear fractional differential equations into a nonlinear algebraic system. The nonlinearity problem is then solved using an iterative approach. Numerical results for a variety of chaotic systems are introduced using the MATLAB program and compared with previous theoretical and numerical results to ensure their reliability, convergence, accuracy, and efficiency. The fractional parameters play an effective role in studying the proposed problems. The achieved solutions prove the viability of the presented method and demonstrate that this method is easy to implement, effective, highly accurate, and appropriate for studying fractional differential equations emerging in fields related to chaotic systems and generalized Caputo-type fractional problems in the future.

Suggested Citation

  • Abdelfattah Mustafa & Reda S. Salama & Mokhtar Mohamed, 2023. "Analysis of Generalized Nonlinear Quadrature for Novel Fractional-Order Chaotic Systems Using Sinc Shape Function," Mathematics, MDPI, vol. 11(8), pages 1-17, April.
  • Handle: RePEc:gam:jmathe:v:11:y:2023:i:8:p:1932-:d:1127762
    as

    Download full text from publisher

    File URL: https://www.mdpi.com/2227-7390/11/8/1932/pdf
    Download Restriction: no

    File URL: https://www.mdpi.com/2227-7390/11/8/1932/
    Download Restriction: no
    ---><---

    References listed on IDEAS

    as
    1. Li, Changpin & Yan, Jianping, 2007. "The synchronization of three fractional differential systems," Chaos, Solitons & Fractals, Elsevier, vol. 32(2), pages 751-757.
    2. Cang, Jie & Tan, Yue & Xu, Hang & Liao, Shi-Jun, 2009. "Series solutions of non-linear Riccati differential equations with fractional order," Chaos, Solitons & Fractals, Elsevier, vol. 40(1), pages 1-9.
    3. Sheu, Long-Jye & Chen, Hsien-Keng & Chen, Juhn-Horng & Tam, Lap-Mou & Chen, Wen-Chin & Lin, Kuang-Tai & Kang, Yuan, 2008. "Chaos in the Newton–Leipnik system with fractional order," Chaos, Solitons & Fractals, Elsevier, vol. 36(1), pages 98-103.
    4. Lu, Jun Guo & Chen, Guanrong, 2006. "A note on the fractional-order Chen system," Chaos, Solitons & Fractals, Elsevier, vol. 27(3), pages 685-688.
    5. Odibat, Zaid & Momani, Shaher, 2008. "Modified homotopy perturbation method: Application to quadratic Riccati differential equation of fractional order," Chaos, Solitons & Fractals, Elsevier, vol. 36(1), pages 167-174.
    6. Zain-Aldeen S. A. Rahman & Basil H. Jasim & Yasir I. A. Al-Yasir & Yim-Fun Hu & Raed A. Abd-Alhameed & Bilal Naji Alhasnawi, 2021. "A New Fractional-Order Chaotic System with Its Analysis, Synchronization, and Circuit Realization for Secure Communication Applications," Mathematics, MDPI, vol. 9(20), pages 1-25, October.
    7. Deng, W.H. & Li, C.P., 2005. "Chaos synchronization of the fractional Lü system," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 353(C), pages 61-72.
    8. Mahmoud, Gamal M. & Arafa, Ayman A. & Abed-Elhameed, Tarek M. & Mahmoud, Emad E., 2017. "Chaos control of integer and fractional orders of chaotic Burke–Shaw system using time delayed feedback control," Chaos, Solitons & Fractals, Elsevier, vol. 104(C), pages 680-692.
    9. Xiangjun Wu & Yang Li & Jürgen Kurths, 2015. "A New Color Image Encryption Scheme Using CML and a Fractional-Order Chaotic System," PLOS ONE, Public Library of Science, vol. 10(3), pages 1-28, March.
    10. Baleanu, Dumitru & Wu, Guo–Cheng & Zeng, Sheng–Da, 2017. "Chaos analysis and asymptotic stability of generalized Caputo fractional differential equations," Chaos, Solitons & Fractals, Elsevier, vol. 102(C), pages 99-105.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Zhu, Hao & Zhou, Shangbo & Zhang, Jun, 2009. "Chaos and synchronization of the fractional-order Chua’s system," Chaos, Solitons & Fractals, Elsevier, vol. 39(4), pages 1595-1603.
    2. Agrawal, S.K. & Srivastava, M. & Das, S., 2012. "Synchronization of fractional order chaotic systems using active control method," Chaos, Solitons & Fractals, Elsevier, vol. 45(6), pages 737-752.
    3. Jim Gatheral & Radoš Radoičić, 2019. "Rational Approximation Of The Rough Heston Solution," International Journal of Theoretical and Applied Finance (IJTAF), World Scientific Publishing Co. Pte. Ltd., vol. 22(03), pages 1-19, May.
    4. Fathy, Mohamed & Abdelgaber, K.M., 2022. "Approximate solutions for the fractional order quadratic Riccati and Bagley-Torvik differential equations," Chaos, Solitons & Fractals, Elsevier, vol. 162(C).
    5. Cruz-Victoria, Juan C. & Martínez-Guerra, Rafael & Pérez-Pinacho, Claudia A. & Gómez-Cortés, Gian Carlo, 2015. "Synchronization of nonlinear fractional order systems by means of PIrα reduced order observer," Applied Mathematics and Computation, Elsevier, vol. 262(C), pages 224-231.
    6. S. Balaji, 2014. "Legendre Wavelet Operational Matrix Method for Solution of Riccati Differential Equation," International Journal of Mathematics and Mathematical Sciences, Hindawi, vol. 2014, pages 1-10, June.
    7. Petráš, Ivo, 2008. "A note on the fractional-order Chua’s system," Chaos, Solitons & Fractals, Elsevier, vol. 38(1), pages 140-147.
    8. Lin, Tsung-Chih & Lee, Tun-Yuan & Balas, Valentina E., 2011. "Adaptive fuzzy sliding mode control for synchronization of uncertain fractional order chaotic systems," Chaos, Solitons & Fractals, Elsevier, vol. 44(10), pages 791-801.
    9. Deng, Hongmin & Li, Tao & Wang, Qionghua & Li, Hongbin, 2009. "A fractional-order hyperchaotic system and its synchronization," Chaos, Solitons & Fractals, Elsevier, vol. 41(2), pages 962-969.
    10. A.G., Soriano–Sánchez & C., Posadas–Castillo & M.A., Platas–Garza & A., Arellano–Delgado, 2018. "Synchronization and FPGA realization of complex networks with fractional–order Liu chaotic oscillators," Applied Mathematics and Computation, Elsevier, vol. 332(C), pages 250-262.
    11. Hallaji, Majid & Dideban, Abbas & Khanesar, Mojtaba Ahmadieh & kamyad, Ali vahidyan, 2018. "Optimal synchronization of non-smooth fractional order chaotic systems with uncertainty based on extension of a numerical approach in fractional optimal control problems," Chaos, Solitons & Fractals, Elsevier, vol. 115(C), pages 325-340.
    12. Deshpande, Amey S. & Daftardar-Gejji, Varsha, 2017. "On disappearance of chaos in fractional systems," Chaos, Solitons & Fractals, Elsevier, vol. 102(C), pages 119-126.
    13. Tavazoei, Mohammad Saleh & Haeri, Mohammad, 2008. "Synchronization of chaotic fractional-order systems via active sliding mode controller," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 387(1), pages 57-70.
    14. Zhang, Weiwei & Zhou, Shangbo & Li, Hua & Zhu, Hao, 2009. "Chaos in a fractional-order Rössler system," Chaos, Solitons & Fractals, Elsevier, vol. 42(3), pages 1684-1691.
    15. Bota, Constantin & Căruntu, Bogdan, 2017. "Analytical approximate solutions for quadratic Riccati differential equation of fractional order using the Polynomial Least Squares Method," Chaos, Solitons & Fractals, Elsevier, vol. 102(C), pages 339-345.
    16. Zhu, Hao & Zhou, Shangbo & He, Zhongshi, 2009. "Chaos synchronization of the fractional-order Chen’s system," Chaos, Solitons & Fractals, Elsevier, vol. 41(5), pages 2733-2740.
    17. Siow Woon Jeng & Adem Kilicman, 2020. "Series Expansion and Fourth-Order Global Padé Approximation for a Rough Heston Solution," Mathematics, MDPI, vol. 8(11), pages 1-26, November.
    18. Ge, Zheng-Ming & Yi, Chang-Xian, 2007. "Chaos in a nonlinear damped Mathieu system, in a nano resonator system and in its fractional order systems," Chaos, Solitons & Fractals, Elsevier, vol. 32(1), pages 42-61.
    19. Li, Changpin & Yan, Jianping, 2007. "The synchronization of three fractional differential systems," Chaos, Solitons & Fractals, Elsevier, vol. 32(2), pages 751-757.
    20. Zambrano-Serrano, Ernesto & Bekiros, Stelios & Platas-Garza, Miguel A. & Posadas-Castillo, Cornelio & Agarwal, Praveen & Jahanshahi, Hadi & Aly, Ayman A., 2021. "On chaos and projective synchronization of a fractional difference map with no equilibria using a fuzzy-based state feedback control," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 578(C).

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:gam:jmathe:v:11:y:2023:i:8:p:1932-:d:1127762. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: MDPI Indexing Manager (email available below). General contact details of provider: https://www.mdpi.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.