IDEAS home Printed from https://ideas.repec.org/a/eee/chsofr/v143y2021ics0960077920309681.html
   My bibliography  Save this article

Global attractiveness and consensus for Riemann–Liouville’s nonlinear fractional systems with mixed time-delays

Author

Listed:
  • Liu, Song
  • Yang, Ran
  • Li, Xiaoyan
  • Xiao, Jian

Abstract

This article deals with attractiveness and consensus for Riemann–Liouville’s nonlinear fractional systems with mixed time-delays (RL-NFSMDs). A reliable and simple method is adopted to achieve global attractiveness in terms of traditional Lyapunov direct approach, properties of fractional calculus and analytical technique. As a straightforward application of our proposed method, global consensus analysis for RL fractional multiple agent systems is considered and several algebraic criteria are presented by means of graph theory. The method permits one to calculate first-order derivative for the corresponding Lyapunov function and may deal with well the trouble brought from fractional derivatives and time-delays. Finally, illustrative examples are given to further clarify the reliability and validity of our results.

Suggested Citation

  • Liu, Song & Yang, Ran & Li, Xiaoyan & Xiao, Jian, 2021. "Global attractiveness and consensus for Riemann–Liouville’s nonlinear fractional systems with mixed time-delays," Chaos, Solitons & Fractals, Elsevier, vol. 143(C).
  • Handle: RePEc:eee:chsofr:v:143:y:2021:i:c:s0960077920309681
    DOI: 10.1016/j.chaos.2020.110577
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S0960077920309681
    Download Restriction: Full text for ScienceDirect subscribers only

    File URL: https://libkey.io/10.1016/j.chaos.2020.110577?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Shiyun Shen & Wenjing Li & Wei Zhu, 2017. "Consensus of Fractional-Order Multiagent Systems with Double Integrator under Switching Topologies," Discrete Dynamics in Nature and Society, Hindawi, vol. 2017, pages 1-7, August.
    2. Li, Mengmeng & Wang, JinRong, 2018. "Exploring delayed Mittag-Leffler type matrix functions to study finite time stability of fractional delay differential equations," Applied Mathematics and Computation, Elsevier, vol. 324(C), pages 254-265.
    3. Chunde Yang & Wenjing Li & Wei Zhu, 2017. "Consensus Analysis of Fractional-Order Multiagent Systems with Double-Integrator," Discrete Dynamics in Nature and Society, Hindawi, vol. 2017, pages 1-8, January.
    4. Rostek, S. & Schöbel, R., 2013. "A note on the use of fractional Brownian motion for financial modeling," Economic Modelling, Elsevier, vol. 30(C), pages 30-35.
    5. Baleanu, Dumitru & Wu, Guo–Cheng & Zeng, Sheng–Da, 2017. "Chaos analysis and asymptotic stability of generalized Caputo fractional differential equations," Chaos, Solitons & Fractals, Elsevier, vol. 102(C), pages 99-105.
    6. Guojian Ren & Yongguang Yu & Shuo Zhang, 2015. "Leader-Following Consensus of Fractional Nonlinear Multiagent Systems," Mathematical Problems in Engineering, Hindawi, vol. 2015, pages 1-8, June.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Changhui Wang & Mei Liang & Yongsheng Chai, 2019. "Adaptive Neural Network Control of a Class of Fractional Order Uncertain Nonlinear MIMO Systems with Input Constraints," Complexity, Hindawi, vol. 2019, pages 1-15, November.
    2. Kui Liu & Michal Fečkan & D. O’Regan & JinRong Wang, 2019. "Hyers–Ulam Stability and Existence of Solutions for Differential Equations with Caputo–Fabrizio Fractional Derivative," Mathematics, MDPI, vol. 7(4), pages 1-14, April.
    3. Ballestra, Luca Vincenzo & Pacelli, Graziella & Radi, Davide, 2016. "A very efficient approach for pricing barrier options on an underlying described by the mixed fractional Brownian motion," Chaos, Solitons & Fractals, Elsevier, vol. 87(C), pages 240-248.
    4. Verma, S. & Viswanathan, P., 2018. "A note on Katugampola fractional calculus and fractal dimensions," Applied Mathematics and Computation, Elsevier, vol. 339(C), pages 220-230.
    5. Daniel Bartl & Michael Kupper & David J. Prömel & Ludovic Tangpi, 2019. "Duality for pathwise superhedging in continuous time," Finance and Stochastics, Springer, vol. 23(3), pages 697-728, July.
    6. Vasile Brătian & Ana-Maria Acu & Camelia Oprean-Stan & Emil Dinga & Gabriela-Mariana Ionescu, 2021. "Efficient or Fractal Market Hypothesis? A Stock Indexes Modelling Using Geometric Brownian Motion and Geometric Fractional Brownian Motion," Mathematics, MDPI, vol. 9(22), pages 1-20, November.
    7. Syam, Muhammed I. & Sharadga, Mwaffag & Hashim, I., 2021. "A numerical method for solving fractional delay differential equations based on the operational matrix method," Chaos, Solitons & Fractals, Elsevier, vol. 147(C).
    8. Benjemaa, Mondher, 2018. "Taylor’s formula involving generalized fractional derivatives," Applied Mathematics and Computation, Elsevier, vol. 335(C), pages 182-195.
    9. Manley, Bruce & Niquidet, Kurt, 2017. "How does real option value compare with Faustmann value when log prices follow fractional Brownian motion?," Forest Policy and Economics, Elsevier, vol. 85(P1), pages 76-84.
    10. Axel A. Araneda, 2019. "The fractional and mixed-fractional CEV model," Papers 1903.05747, arXiv.org, revised Jun 2019.
    11. Ahmadian, D. & Ballestra, L.V., 2020. "Pricing geometric Asian rainbow options under the mixed fractional Brownian motion," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 555(C).
    12. Alexander Kukush & Stanislav Lohvinenko & Yuliya Mishura & Kostiantyn Ralchenko, 2022. "Two approaches to consistent estimation of parameters of mixed fractional Brownian motion with trend," Statistical Inference for Stochastic Processes, Springer, vol. 25(1), pages 159-187, April.
    13. Dufera, Tamirat Temesgen, 2024. "Fractional Brownian motion in option pricing and dynamic delta hedging: Experimental simulations," The North American Journal of Economics and Finance, Elsevier, vol. 69(PB).
    14. Yang, Zhanwen & Li, Qi & Yao, Zichen, 2023. "A stability analysis for multi-term fractional delay differential equations with higher order," Chaos, Solitons & Fractals, Elsevier, vol. 167(C).
    15. Yu-Sheng Hsu & Pei-Chun Chen & Cheng-Hsun Wu, 2020. "The Optimal Limit Prices of Limit Orders under an Extended Geometric Brownian Motion with Bankruptcy Risk," Mathematics, MDPI, vol. 9(1), pages 1-13, December.
    16. Zhang, Pu & Sun, Qi & Xiao, Wei-Lin, 2014. "Parameter identification in mixed Brownian–fractional Brownian motions using Powell's optimization algorithm," Economic Modelling, Elsevier, vol. 40(C), pages 314-319.
    17. Liu, Zhibin & Huang, Shan, 2021. "Carbon option price forecasting based on modified fractional Brownian motion optimized by GARCH model in carbon emission trading," The North American Journal of Economics and Finance, Elsevier, vol. 55(C).
    18. Christopher N. Angstmann & Stuart-James M. Burney & Bruce I. Henry & Byron A. Jacobs & Zhuang Xu, 2023. "A Systematic Approach to Delay Functions," Mathematics, MDPI, vol. 11(21), pages 1-34, November.
    19. Zúñiga-Aguilar, C.J. & Gómez-Aguilar, J.F. & Escobar-Jiménez, R.F. & Romero-Ugalde, H.M., 2019. "A novel method to solve variable-order fractional delay differential equations based in lagrange interpolations," Chaos, Solitons & Fractals, Elsevier, vol. 126(C), pages 266-282.
    20. Cheraghalizadeh, Jafar & Valizadeh, Neda & Tizdast, Susan & Najafi, Morteza N., 2024. "Fractional Brownian motion as a rough surface," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 646(C).

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:chsofr:v:143:y:2021:i:c:s0960077920309681. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Thayer, Thomas R. (email available below). General contact details of provider: https://www.journals.elsevier.com/chaos-solitons-and-fractals .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.