IDEAS home Printed from https://ideas.repec.org/a/eee/chsofr/v156y2022ics0960077922000297.html
   My bibliography  Save this article

Analytic simulation of the synergy of spatial-temporal memory indices with proportional time delay

Author

Listed:
  • Jaradat, Imad
  • Alquran, Marwan
  • Sulaiman, Tukur A.
  • Yusuf, Abdullahi

Abstract

In the present work, three space-time trace parameters are appended to physical systems to analytically outline their mutual impact and to characterize the dynamic behaviors of these systems; namely the proportional time delay τ∈(0,1) and the Caputo spatial-temporal fractional derivatives α,β∈(0,1). The adopted analytical approach depends on a novel adaptation of the differential transform method in a higher dimensional fractional space in which the initial value problems (IVPs), under consideration, are transformed into a 2-dimensional recurrence relation. Some central differential transformation theorems in 2-dimensional fractional space are provided to illustrate the influence of the aforementioned parameters. The method has been successfully applied to furnish the solution, in the form of a Cauchy product of absolutely convergent series, for a 2-dimensional extension of advection-dispersion, gas dynamics, convection-diffusion, wave, telegraph, and Klein–Gorden equations. The study concluded that the obtained solutions operate as a homotopic mapping between two states, and the Caputo fractional derivatives can be interpreted as memory indices.

Suggested Citation

  • Jaradat, Imad & Alquran, Marwan & Sulaiman, Tukur A. & Yusuf, Abdullahi, 2022. "Analytic simulation of the synergy of spatial-temporal memory indices with proportional time delay," Chaos, Solitons & Fractals, Elsevier, vol. 156(C).
  • Handle: RePEc:eee:chsofr:v:156:y:2022:i:c:s0960077922000297
    DOI: 10.1016/j.chaos.2022.111818
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S0960077922000297
    Download Restriction: Full text for ScienceDirect subscribers only

    File URL: https://libkey.io/10.1016/j.chaos.2022.111818?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Syam, Muhammed I. & Sharadga, Mwaffag & Hashim, I., 2021. "A numerical method for solving fractional delay differential equations based on the operational matrix method," Chaos, Solitons & Fractals, Elsevier, vol. 147(C).
    2. Alquran, Marwan & Jaradat, Imad, 2019. "Delay-asymptotic solutions for the time-fractional delay-type wave equation," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 527(C).
    3. Tang, Changyang & Zhang, Chengjian, 2021. "A fully discrete θ-method for solving semi-linear reaction–diffusion equations with time-variable delay," Mathematics and Computers in Simulation (MATCOM), Elsevier, vol. 179(C), pages 48-56.
    4. Bahaa, G.M., 2019. "Optimal control problem for variable-order fractional differential systems with time delay involving Atangana–Baleanu derivatives," Chaos, Solitons & Fractals, Elsevier, vol. 122(C), pages 129-142.
    5. Zúñiga-Aguilar, C.J. & Gómez-Aguilar, J.F. & Escobar-Jiménez, R.F. & Romero-Ugalde, H.M., 2019. "A novel method to solve variable-order fractional delay differential equations based in lagrange interpolations," Chaos, Solitons & Fractals, Elsevier, vol. 126(C), pages 266-282.
    6. Usman, M. & Hamid, M. & Zubair, T. & Haq, R.U. & Wang, W. & Liu, M.B., 2020. "Novel operational matrices-based method for solving fractional-order delay differential equations via shifted Gegenbauer polynomials," Applied Mathematics and Computation, Elsevier, vol. 372(C).
    7. Kavitha, K. & Vijayakumar, V. & Udhayakumar, R., 2020. "Results on controllability of Hilfer fractional neutral differential equations with infinite delay via measures of noncompactness," Chaos, Solitons & Fractals, Elsevier, vol. 139(C).
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Alquran, Marwan & Yousef, Feras & Alquran, Farah & Sulaiman, Tukur A. & Yusuf, Abdullahi, 2021. "Dual-wave solutions for the quadratic–cubic conformable-Caputo time-fractional Klein–Fock–Gordon equation," Mathematics and Computers in Simulation (MATCOM), Elsevier, vol. 185(C), pages 62-76.
    2. Jiale Sheng & Wei Jiang & Denghao Pang & Sen Wang, 2020. "Controllability of Nonlinear Fractional Dynamical Systems with a Mittag–Leffler Kernel," Mathematics, MDPI, vol. 8(12), pages 1-10, December.
    3. Usman, Muhammad & Hamid, Muhammad & Liu, Moubin, 2021. "Novel operational matrices-based finite difference/spectral algorithm for a class of time-fractional Burger equation in multidimensions," Chaos, Solitons & Fractals, Elsevier, vol. 144(C).
    4. Kavitha, K. & Vijayakumar, V. & Shukla, Anurag & Nisar, Kottakkaran Sooppy & Udhayakumar, R., 2021. "Results on approximate controllability of Sobolev-type fractional neutral differential inclusions of Clarke subdifferential type," Chaos, Solitons & Fractals, Elsevier, vol. 151(C).
    5. Savadkoohi, Fateme Rezaei & Rabbani, Mohsen & Allahviranloo, Tofigh & Malkhalifeh, Mohsen Rostamy, 2024. "A fractional multi-wavelet basis in Banach space and solving fractional delay differential equations," Chaos, Solitons & Fractals, Elsevier, vol. 186(C).
    6. Panda, Sumati Kumari & Ravichandran, C. & Hazarika, Bipan, 2021. "Results on system of Atangana–Baleanu fractional order Willis aneurysm and nonlinear singularly perturbed boundary value problems," Chaos, Solitons & Fractals, Elsevier, vol. 142(C).
    7. Thitiporn Linitda & Kulandhaivel Karthikeyan & Palanisamy Raja Sekar & Thanin Sitthiwirattham, 2023. "Analysis on Controllability Results for Impulsive Neutral Hilfer Fractional Differential Equations with Nonlocal Conditions," Mathematics, MDPI, vol. 11(5), pages 1-16, February.
    8. Abu Arqub, Omar & Al-Smadi, Mohammed, 2020. "An adaptive numerical approach for the solutions of fractional advection–diffusion and dispersion equations in singular case under Riesz’s derivative operator," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 540(C).
    9. Raja, M. Mohan & Vijayakumar, V. & Udhayakumar, R. & Zhou, Yong, 2020. "A new approach on the approximate controllability of fractional differential evolution equations of order 1 < r < 2 in Hilbert spaces," Chaos, Solitons & Fractals, Elsevier, vol. 141(C).
    10. Asmae Tajani & Fatima-Zahrae El Alaoui, 2023. "Boundary Controllability of Riemann–Liouville Fractional Semilinear Evolution Systems," Journal of Optimization Theory and Applications, Springer, vol. 198(2), pages 767-780, August.
    11. Andrei D. Polyanin & Vsevolod G. Sorokin, 2023. "Reductions and Exact Solutions of Nonlinear Wave-Type PDEs with Proportional and More Complex Delays," Mathematics, MDPI, vol. 11(3), pages 1-25, January.
    12. Sondos M. Syam & Z. Siri & Sami H. Altoum & R. Md. Kasmani, 2023. "An Efficient Numerical Approach for Solving Systems of Fractional Problems and Their Applications in Science," Mathematics, MDPI, vol. 11(14), pages 1-21, July.
    13. Usman, Muhammad & Hamid, Muhammad & Khan, Zafar Hayat & Haq, Rizwan Ul, 2021. "Neuronal dynamics and electrophysiology fractional model: A modified wavelet approach," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 570(C).
    14. Shukla, Anurag & Vijayakumar, V. & Nisar, Kottakkaran Sooppy, 2022. "A new exploration on the existence and approximate controllability for fractional semilinear impulsive control systems of order r∈(1,2)," Chaos, Solitons & Fractals, Elsevier, vol. 154(C).
    15. Sivajiganesan Sivasankar & Ramalingam Udhayakumar & Velmurugan Subramanian & Ghada AlNemer & Ahmed M. Elshenhab, 2022. "Existence of Hilfer Fractional Stochastic Differential Equations with Nonlocal Conditions and Delay via Almost Sectorial Operators," Mathematics, MDPI, vol. 10(22), pages 1-18, November.
    16. Hasib Khan & Jehad Alzabut & Haseena Gulzar & Osman Tunç & Sandra Pinelas, 2023. "On System of Variable Order Nonlinear p-Laplacian Fractional Differential Equations with Biological Application," Mathematics, MDPI, vol. 11(8), pages 1-17, April.
    17. Dineshkumar, C. & Udhayakumar, R. & Vijayakumar, V. & Nisar, Kottakkaran Sooppy & Shukla, Anurag, 2022. "A note concerning to approximate controllability of Atangana-Baleanu fractional neutral stochastic systems with infinite delay," Chaos, Solitons & Fractals, Elsevier, vol. 157(C).
    18. Raja, M. Mohan & Vijayakumar, V. & Udhayakumar, R., 2020. "Results on the existence and controllability of fractional integro-differential system of order 1 < r < 2 via measure of noncompactness," Chaos, Solitons & Fractals, Elsevier, vol. 139(C).
    19. Akinlar, Mehmet Ali & Tchier, Fairouz & Inc, Mustafa, 2020. "Chaos control and solutions of fractional-order Malkus waterwheel model," Chaos, Solitons & Fractals, Elsevier, vol. 135(C).
    20. Dehestani, H. & Ordokhani, Y. & Razzaghi, M., 2020. "Application of fractional Gegenbauer functions in variable-order fractional delay-type equations with non-singular kernel derivatives," Chaos, Solitons & Fractals, Elsevier, vol. 140(C).

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:chsofr:v:156:y:2022:i:c:s0960077922000297. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Thayer, Thomas R. (email available below). General contact details of provider: https://www.journals.elsevier.com/chaos-solitons-and-fractals .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.