IDEAS home Printed from https://ideas.repec.org/a/eee/chsofr/v140y2020ics0960077920305166.html
   My bibliography  Save this article

Fractal signatures of the COVID-19 spread

Author

Listed:
  • Abbasi, M.
  • Bollini, A.L.
  • Castillo, J.L.B.
  • Deppman, A.
  • Guidio, J.P.
  • Matuoka, P.T.
  • Meirelles, A.D.
  • Policarpo, J.M.P.
  • Ramos, A.A.G.F.
  • Simionatto, S.
  • Varona, A.R.P.
  • Andrade-II, E.
  • Panjeh, H.
  • Trevisan, L.A.

Abstract

Recent quantitative approaches for studying several aspects of urban life and infrastructure have shown that scale properties allow the understanding of many features of urban infrastructure and of human activity in cities. In this paper, we show that COVID-19 virus contamination follows a similar pattern in different regions of the world. The superlinear power-law behavior for the number of contamination cases as a function of the city population, with exponent β of the order of 1.15 is always obtained. Due to the strong indication that scaling is a determinant feature of covid-19 spread, we propose an epidemiological model that embodies a fractal structure, allowing a more detailed description of the observed data about the virus spread in different countries and regions. The hypothesis that fractal structures can be formed in cities as well as in larger networks is tested, indicating that indeed self-similarity may be found in networks connecting several cities.

Suggested Citation

  • Abbasi, M. & Bollini, A.L. & Castillo, J.L.B. & Deppman, A. & Guidio, J.P. & Matuoka, P.T. & Meirelles, A.D. & Policarpo, J.M.P. & Ramos, A.A.G.F. & Simionatto, S. & Varona, A.R.P. & Andrade-II, E. & , 2020. "Fractal signatures of the COVID-19 spread," Chaos, Solitons & Fractals, Elsevier, vol. 140(C).
  • Handle: RePEc:eee:chsofr:v:140:y:2020:i:c:s0960077920305166
    DOI: 10.1016/j.chaos.2020.110119
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S0960077920305166
    Download Restriction: Full text for ScienceDirect subscribers only

    File URL: https://libkey.io/10.1016/j.chaos.2020.110119?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Netto, Vinicius M. & Brigatti, Edgardo & Meirelles, João & Ribeiro, Fabiano L. & Pace, Bruno & Cacholas, Caio & Sanches, Patricia Mara, 2018. "Cities, from information to interaction," SocArXiv jgz5d, Center for Open Science.
    2. Luís M A Bettencourt & José Lobo & Deborah Strumsky & Geoffrey B West, 2010. "Urban Scaling and Its Deviations: Revealing the Structure of Wealth, Innovation and Crime across Cities," PLOS ONE, Public Library of Science, vol. 5(11), pages 1-9, November.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Jahanshahi, Hadi & Munoz-Pacheco, Jesus M. & Bekiros, Stelios & Alotaibi, Naif D., 2021. "A fractional-order SIRD model with time-dependent memory indexes for encompassing the multi-fractional characteristics of the COVID-19," Chaos, Solitons & Fractals, Elsevier, vol. 143(C).
    2. Nie, Shiqian & Lei, Xiaochun, 2023. "A time-dependent model of the transmission of COVID-19 variants dynamics using Hausdorff fractal derivative," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 629(C).

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Huang, Siyu & Shi, Yi & Chen, Qinghua & Li, Xiaomeng, 2022. "The growth path of high-tech industries: Statistical laws and evolution demands," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 603(C).
    2. Ruiqi Li & Lingyun Lu & Weiwei Gu & Shaodong Ma & Gang Xu & H. Eugene Stanley, 2020. "Assessing the attraction of cities on venture capital from a scaling law perspective," Papers 2011.06287, arXiv.org.
    3. Peter Mayerhofer & Oliver Fritz & Dieter Pennerstorfer, 2010. "Dritter Bericht zur internationalen Wettbewerbsfähigkeit Wiens," WIFO Studies, WIFO, number 42430.
    4. Brinkley, Catherine & Raj, Subhashni, 2022. "Perfusion and urban thickness: The shape of cities," Land Use Policy, Elsevier, vol. 115(C).
    5. Qingsong He & Lingping Huang & Jing Li, 2022. "Rediscovering the Scaling Law of Urban Land from a Multi-Scale Perspective—A Case Study of Wuhan," Land, MDPI, vol. 11(6), pages 1-15, June.
    6. Steven A. Cohen & Kelsie L. DeFrancia & Hayley J. Martinez, 2016. "A positive vision of sustainability," Journal of Environmental Studies and Sciences, Springer;Association of Environmental Studies and Sciences, vol. 6(1), pages 231-238, March.
    7. Yu Sang Chang & Sung Jun Jo & Yoo-Taek Lee & Yoonji Lee, 2021. "Population Density or Populations Size. Which Factor Determines Urban Traffic Congestion?," Sustainability, MDPI, vol. 13(8), pages 1-21, April.
    8. Wenhan Feng & Bayi Li & Zebin Chen & Peng Liu, 2021. "City size based scaling of the urban internal nodes layout," PLOS ONE, Public Library of Science, vol. 16(4), pages 1-16, April.
    9. Diana Reckien & Johannes Flacke & Marta Olazabal & Oliver Heidrich, 2015. "The Influence of Drivers and Barriers on Urban Adaptation and Mitigation Plans—An Empirical Analysis of European Cities," PLOS ONE, Public Library of Science, vol. 10(8), pages 1-21, August.
    10. Sandro M. Reia & P. Suresh C. Rao & Marc Barthelemy & Satish V. Ukkusuri, 2022. "Spatial structure of city population growth," Nature Communications, Nature, vol. 13(1), pages 1-10, December.
    11. David Levinson, 2012. "Network Structure and City Size," PLOS ONE, Public Library of Science, vol. 7(1), pages 1-11, January.
    12. David Castells‐Quintana & Vicente Royuela & Paolo Veneri, 2020. "Inequality and city size: An analysis for OECD functional urban areas," Papers in Regional Science, Wiley Blackwell, vol. 99(4), pages 1045-1064, August.
    13. Nicos Komninos & Christina Kakderi & Luca Mora & Anastasia Panori & Elena Sefertzi, 2022. "Towards High Impact Smart Cities: a Universal Architecture Based on Connected Intelligence Spaces," Journal of the Knowledge Economy, Springer;Portland International Center for Management of Engineering and Technology (PICMET), vol. 13(2), pages 1169-1197, June.
    14. Chen, Yanguang, 2017. "Multi-scaling allometric analysis for urban and regional development," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 465(C), pages 673-689.
    15. Carolina Castaldi, 2024. "The geography of urban innovation beyond patents only: New evidence on large and secondary cities in the United States," Urban Studies, Urban Studies Journal Limited, vol. 61(7), pages 1248-1272, May.
    16. Didier Sornette & Thomas Maillart & Giacomo Ghezzi, 2014. "How Much Is the Whole Really More than the Sum of Its Parts? 1 ⊞ 1 = 2.5: Superlinear Productivity in Collective Group Actions," PLOS ONE, Public Library of Science, vol. 9(8), pages 1-15, August.
    17. Somwrita Sarkar & Peter Phibbs & Roderick Simpson & Sachin Wasnik, 2015. "The scaling of income inequality in cities," Papers 1509.00959, arXiv.org.
    18. Andres Gomez-Lievano & Michail Fragkias, 2024. "The benefits and costs of agglomeration: insights from economics and complexity," Papers 2404.13178, arXiv.org.
    19. Dominik Hartmann & Flavio L. Pinheiro, 2022. "Economic complexity and inequality at the national and regional level," Papers 2206.00818, arXiv.org, revised Jun 2022.
    20. Haroldo V Ribeiro & Quentin S Hanley & Dan Lewis, 2018. "Unveiling relationships between crime and property in England and Wales via density scale-adjusted metrics and network tools," PLOS ONE, Public Library of Science, vol. 13(2), pages 1-21, February.

    More about this item

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:chsofr:v:140:y:2020:i:c:s0960077920305166. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Thayer, Thomas R. (email available below). General contact details of provider: https://www.journals.elsevier.com/chaos-solitons-and-fractals .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.