IDEAS home Printed from https://ideas.repec.org/a/eee/chsofr/v168y2023ics0960077923000644.html
   My bibliography  Save this article

Parameters and order identification of fractional-order epidemiological systems by Lévy-PSO and its application for the spread of COVID-19

Author

Listed:
  • Xie, Bing
  • Ge, Fudong

Abstract

To identify the knowledge about parameters and order is very important for the modeling of fractional-order epidemiological systems. In this paper, such an identification problem is formulated as a nonlinear optimization problem. For solving this, the Lévy-PSO algorithm, which is obtained by applying Lévy flight to generalize the classical particle swarm optimization (PSO), is used. More precisely, we first utilize Lévy-PSO to identify the constant parameters and the order of fractional-order SIR, SEIR systems with simulated data to show the effectiveness of our proposed identification strategy. Then, we continue employing Lévy-PSO to solve the parameter estimation problem of fractional-order SEAIR model under the real data of COVID-19 in Shanghai from 2/26/2022 to 4/27/2022. Numerical examples and associated comparisons with other existing methods allow us to achieve that our proposed identification strategy can generate a good performance with high accuracy and rapid convergence.

Suggested Citation

  • Xie, Bing & Ge, Fudong, 2023. "Parameters and order identification of fractional-order epidemiological systems by Lévy-PSO and its application for the spread of COVID-19," Chaos, Solitons & Fractals, Elsevier, vol. 168(C).
  • Handle: RePEc:eee:chsofr:v:168:y:2023:i:c:s0960077923000644
    DOI: 10.1016/j.chaos.2023.113163
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S0960077923000644
    Download Restriction: Full text for ScienceDirect subscribers only

    File URL: https://libkey.io/10.1016/j.chaos.2023.113163?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. He, Qie & Wang, Ling & Liu, Bo, 2007. "Parameter estimation for chaotic systems by particle swarm optimization," Chaos, Solitons & Fractals, Elsevier, vol. 34(2), pages 654-661.
    2. Andrew M. Edwards & Richard A. Phillips & Nicholas W. Watkins & Mervyn P. Freeman & Eugene J. Murphy & Vsevolod Afanasyev & Sergey V. Buldyrev & M. G. E. da Luz & E. P. Raposo & H. Eugene Stanley & Ga, 2007. "Revisiting Lévy flight search patterns of wandering albatrosses, bumblebees and deer," Nature, Nature, vol. 449(7165), pages 1044-1048, October.
    3. Gandhimohan M. Viswanathan, 2010. "Fish in Lévy-flight foraging," Nature, Nature, vol. 465(7301), pages 1018-1019, June.
    4. Baleanu, Dumitru & Jajarmi, Amin & Mohammadi, Hakimeh & Rezapour, Shahram, 2020. "A new study on the mathematical modelling of human liver with Caputo–Fabrizio fractional derivative," Chaos, Solitons & Fractals, Elsevier, vol. 134(C).
    5. Walton, S. & Hassan, O. & Morgan, K. & Brown, M.R., 2011. "Modified cuckoo search: A new gradient free optimisation algorithm," Chaos, Solitons & Fractals, Elsevier, vol. 44(9), pages 710-718.
    6. Jahanshahi, Hadi & Munoz-Pacheco, Jesus M. & Bekiros, Stelios & Alotaibi, Naif D., 2021. "A fractional-order SIRD model with time-dependent memory indexes for encompassing the multi-fractional characteristics of the COVID-19," Chaos, Solitons & Fractals, Elsevier, vol. 143(C).
    7. Ullah, Mohammad Sharif & Higazy, M. & Ariful Kabir, K.M., 2022. "Modeling the epidemic control measures in overcoming COVID-19 outbreaks: A fractional-order derivative approach," Chaos, Solitons & Fractals, Elsevier, vol. 155(C).
    8. Gao, Fei & Lee, Ju-Jang & Li, Zhuoqiu & Tong, Hengqing & Lü, Xiaohong, 2009. "Parameter estimation for chaotic system with initial random noises by particle swarm optimization," Chaos, Solitons & Fractals, Elsevier, vol. 42(2), pages 1286-1291.
    9. Srivastava, H.M. & Saad, Khaled M. & Khader, M.M., 2020. "An efficient spectral collocation method for the dynamic simulation of the fractional epidemiological model of the Ebola virus," Chaos, Solitons & Fractals, Elsevier, vol. 140(C).
    10. Zhang, Boyi & Shang, Pengjian & Zhou, Qin, 2021. "The identification of fractional order systems by multiscale multivariate analysis," Chaos, Solitons & Fractals, Elsevier, vol. 144(C).
    11. Ge, Fudong & Chen, YangQuan, 2017. "Extended Luenberger-type observer for a class of semilinear time fractional diffusion systems," Chaos, Solitons & Fractals, Elsevier, vol. 102(C), pages 229-235.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Mehmood, Ammara & Raja, Muhammad Asif Zahoor & Ninness, Brett, 2024. "Design of fractional-order hammerstein control auto-regressive model for heat exchanger system identification: Treatise on fuzzy-evolutionary computing," Chaos, Solitons & Fractals, Elsevier, vol. 181(C).
    2. Yao Lu, 2023. "The Maximum Correntropy Criterion-Based Identification for Fractional-Order Systems under Stable Distribution Noises," Mathematics, MDPI, vol. 11(20), pages 1-18, October.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Gao, Fei & Li, Xiling & Li, Wenqin & Zhou, Xianjin, 2021. "Stability analysis of a fractional-order novel hepatitis B virus model with immune delay based on Caputo-Fabrizio derivative," Chaos, Solitons & Fractals, Elsevier, vol. 142(C).
    2. Fawaz E. Alsaadi & Amirreza Yasami & Christos Volos & Stelios Bekiros & Hadi Jahanshahi, 2023. "A New Fuzzy Reinforcement Learning Method for Effective Chemotherapy," Mathematics, MDPI, vol. 11(2), pages 1-25, January.
    3. Kritika, & Agarwal, Ritu & Purohit, Sunil Dutt, 2020. "Mathematical model for anomalous subdiffusion using comformable operator," Chaos, Solitons & Fractals, Elsevier, vol. 140(C).
    4. Ullah, Ihsan & Ahmad, Saeed & Rahman, Mati ur & Arfan, Muhammad, 2021. "Investigation of fractional order tuberculosis (TB) model via Caputo derivative," Chaos, Solitons & Fractals, Elsevier, vol. 142(C).
    5. Hussain, Ghulam & Khan, Amir & Zahri, Mostafa & Zaman, Gul, 2022. "Ergodic stationary distribution of stochastic epidemic model for HBV with double saturated incidence rates and vaccination," Chaos, Solitons & Fractals, Elsevier, vol. 160(C).
    6. Khan, Hasib & Ibrahim, Muhammad & Abdel-Aty, Abdel-Haleem & Khashan, M. Motawi & Khan, Farhat Ali & Khan, Aziz, 2021. "A fractional order Covid-19 epidemic model with Mittag-Leffler kernel," Chaos, Solitons & Fractals, Elsevier, vol. 148(C).
    7. Butts, David J. & Thompson, Noelle E. & Christensen, Sonja A. & Williams, David M. & Murillo, Michael S., 2022. "Data-driven agent-based model building for animal movement through Exploratory Data Analysis," Ecological Modelling, Elsevier, vol. 470(C).
    8. Alam, Mehboob & Zada, Akbar, 2022. "Implementation of q-calculus on q-integro-differential equation involving anti-periodic boundary conditions with three criteria," Chaos, Solitons & Fractals, Elsevier, vol. 154(C).
    9. Liaqat, Muhammad Imran & Akgül, Ali, 2022. "A novel approach for solving linear and nonlinear time-fractional Schrödinger equations," Chaos, Solitons & Fractals, Elsevier, vol. 162(C).
    10. Yahya Almalki & Waqar Afzal, 2023. "Some New Estimates of Hermite–Hadamard Inequalities for Harmonical cr - h -Convex Functions via Generalized Fractional Integral Operator on Set-Valued Mappings," Mathematics, MDPI, vol. 11(19), pages 1-21, September.
    11. Hari Mohan Srivastava & Khaled M. Saad, 2020. "A Comparative Study of the Fractional-Order Clock Chemical Model," Mathematics, MDPI, vol. 8(9), pages 1-14, August.
    12. Ghanbari, Behzad, 2021. "On detecting chaos in a prey-predator model with prey’s counter-attack on juvenile predators," Chaos, Solitons & Fractals, Elsevier, vol. 150(C).
    13. Li, Peiluan & Gao, Rong & Xu, Changjin & Ahmad, Shabir & Li, Ying & Akgül, Ali, 2023. "Bifurcation behavior and PDγ control mechanism of a fractional delayed genetic regulatory model," Chaos, Solitons & Fractals, Elsevier, vol. 168(C).
    14. Ullah, Mohammad Sharif & Higazy, M. & Kabir, K.M. Ariful, 2022. "Dynamic analysis of mean-field and fractional-order epidemic vaccination strategies by evolutionary game approach," Chaos, Solitons & Fractals, Elsevier, vol. 162(C).
    15. Chaudhary, Naveed Ishtiaq & Raja, Muhammad Asif Zahoor & Khan, Zeshan Aslam & Mehmood, Ammara & Shah, Syed Muslim, 2022. "Design of fractional hierarchical gradient descent algorithm for parameter estimation of nonlinear control autoregressive systems," Chaos, Solitons & Fractals, Elsevier, vol. 157(C).
    16. Alina Alb Lupaş, 2021. "Applications of the Fractional Calculus in Fuzzy Differential Subordinations and Superordinations," Mathematics, MDPI, vol. 9(20), pages 1-10, October.
    17. Tang, Yinggan & Guan, Xinping, 2009. "Parameter estimation for time-delay chaotic system by particle swarm optimization," Chaos, Solitons & Fractals, Elsevier, vol. 40(3), pages 1391-1398.
    18. Ahmad, Shabir & Ullah, Aman & Arfan, Muhammad & Shah, Kamal, 2020. "On analysis of the fractional mathematical model of rotavirus epidemic with the effects of breastfeeding and vaccination under Atangana-Baleanu (AB) derivative," Chaos, Solitons & Fractals, Elsevier, vol. 140(C).
    19. Izadi, Mohammad & Srivastava, H.M., 2021. "Numerical approximations to the nonlinear fractional-order Logistic population model with fractional-order Bessel and Legendre bases," Chaos, Solitons & Fractals, Elsevier, vol. 145(C).
    20. Attia, Nourhane & Akgül, Ali & Seba, Djamila & Nour, Abdelkader, 2020. "An efficient numerical technique for a biological population model of fractional order," Chaos, Solitons & Fractals, Elsevier, vol. 141(C).

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:chsofr:v:168:y:2023:i:c:s0960077923000644. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Thayer, Thomas R. (email available below). General contact details of provider: https://www.journals.elsevier.com/chaos-solitons-and-fractals .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.