IDEAS home Printed from https://ideas.repec.org/a/eee/chsofr/v142y2021ics0960077920308249.html
   My bibliography  Save this article

Dynamics of epidemics: Impact of easing restrictions and control of infection spread

Author

Listed:
  • de Souza, Silvio L.T.
  • Batista, Antonio M.
  • Caldas, Iberê L.
  • Iarosz, Kelly C.
  • Szezech Jr, José D.

Abstract

During an infectious disease outbreak, mathematical models and computational simulations are essential tools to characterize the epidemic dynamics and aid in design public health policies. Using these tools, we provide an overview of the possible scenarios for the COVID-19 pandemic in the phase of easing restrictions used to reopen the economy and society. To investigate the dynamics of this outbreak, we consider a deterministic compartmental model (SEIR model) with an additional parameter to simulate the restrictions. In general, as a consequence of easing restrictions, we obtain scenarios characterized by high spikes of infections indicating significant acceleration of the spreading disease. Finally, we show how such undesirable scenarios could be avoided by a control strategy of successive partial easing restrictions, namely, we tailor a successive sequence of the additional parameter to prevent spikes in phases of low rate of transmissibility.

Suggested Citation

  • de Souza, Silvio L.T. & Batista, Antonio M. & Caldas, Iberê L. & Iarosz, Kelly C. & Szezech Jr, José D., 2021. "Dynamics of epidemics: Impact of easing restrictions and control of infection spread," Chaos, Solitons & Fractals, Elsevier, vol. 142(C).
  • Handle: RePEc:eee:chsofr:v:142:y:2021:i:c:s0960077920308249
    DOI: 10.1016/j.chaos.2020.110431
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S0960077920308249
    Download Restriction: Full text for ScienceDirect subscribers only

    File URL: https://libkey.io/10.1016/j.chaos.2020.110431?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Xu, Xu & Wiercigroch, M. & Cartmell, M.P., 2005. "Rotating orbits of a parametrically-excited pendulum," Chaos, Solitons & Fractals, Elsevier, vol. 23(5), pages 1537-1548.
    2. Xingjie Hao & Shanshan Cheng & Degang Wu & Tangchun Wu & Xihong Lin & Chaolong Wang, 2020. "Reconstruction of the full transmission dynamics of COVID-19 in Wuhan," Nature, Nature, vol. 584(7821), pages 420-424, August.
    3. Pai, Chintamani & Bhaskar, Ankush & Rawoot, Vaibhav, 2020. "Investigating the dynamics of COVID-19 pandemic in India under lockdown," Chaos, Solitons & Fractals, Elsevier, vol. 138(C).
    4. Crokidakis, Nuno, 2020. "COVID-19 spreading in Rio de Janeiro, Brazil: Do the policies of social isolation really work?," Chaos, Solitons & Fractals, Elsevier, vol. 136(C).
    5. Yousefpour, Amin & Jahanshahi, Hadi & Bekiros, Stelios, 2020. "Optimal policies for control of the novel coronavirus disease (COVID-19) outbreak," Chaos, Solitons & Fractals, Elsevier, vol. 136(C).
    6. Medeiros, E.S. & de Souza, S.L.T. & Medrano-T, R.O. & Caldas, I.L., 2011. "Replicate periodic windows in the parameter space of driven oscillators," Chaos, Solitons & Fractals, Elsevier, vol. 44(11), pages 982-989.
    7. Tagliazucchi, E. & Balenzuela, P. & Travizano, M. & Mindlin, G.B. & Mininni, P.D., 2020. "Lessons from being challenged by COVID-19," Chaos, Solitons & Fractals, Elsevier, vol. 137(C).
    8. de Souza, S.L.T. & Batista, A.M. & Baptista, M.S. & Caldas, I.L. & Balthazar, J.M., 2017. "Characterization in bi-parameter space of a non-ideal oscillator," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 466(C), pages 224-231.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Gabrick, Enrique C. & Sayari, Elaheh & Protachevicz, Paulo R. & Szezech, José D. & Iarosz, Kelly C. & de Souza, Silvio L.T. & Almeida, Alexandre C.L. & Viana, Ricardo L. & Caldas, Iberê L. & Batista, , 2023. "Unpredictability in seasonal infectious diseases spread," Chaos, Solitons & Fractals, Elsevier, vol. 166(C).
    2. Gabrick, Enrique C. & Protachevicz, Paulo R. & Batista, Antonio M. & Iarosz, Kelly C. & de Souza, Silvio L.T. & Almeida, Alexandre C.L. & Szezech, José D. & Mugnaine, Michele & Caldas, Iberê L., 2022. "Effect of two vaccine doses in the SEIR epidemic model using a stochastic cellular automaton," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 597(C).
    3. Mugnaine, Michele & Gabrick, Enrique C. & Protachevicz, Paulo R. & Iarosz, Kelly C. & de Souza, Silvio L.T. & Almeida, Alexandre C.L. & Batista, Antonio M. & Caldas, Iberê L. & Szezech Jr, José D. & V, 2022. "Control attenuation and temporary immunity in a cellular automata SEIR epidemic model," Chaos, Solitons & Fractals, Elsevier, vol. 155(C).

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Trobia, José & de Souza, Silvio L.T. & dos Santos, Margarete A. & Szezech, José D. & Batista, Antonio M. & Borges, Rafael R. & Pereira, Leandro da S. & Protachevicz, Paulo R. & Caldas, Iberê L. & Iaro, 2022. "On the dynamical behaviour of a glucose-insulin model," Chaos, Solitons & Fractals, Elsevier, vol. 155(C).
    2. Okuonghae, D. & Omame, A., 2020. "Analysis of a mathematical model for COVID-19 population dynamics in Lagos, Nigeria," Chaos, Solitons & Fractals, Elsevier, vol. 139(C).
    3. Margielewicz, Jerzy & Gąska, Damian & Litak, Grzegorz, 2019. "Evolution of the geometric structure of strange attractors of a quasi-zero stiffness vibration isolator," Chaos, Solitons & Fractals, Elsevier, vol. 118(C), pages 47-57.
    4. Liang, Xiyin & Qi, Guoyuan, 2017. "Mechanical analysis of Chen chaotic system," Chaos, Solitons & Fractals, Elsevier, vol. 98(C), pages 173-177.
    5. Moon-Hyun Kim & Jiwon Lee & Hee-Jin Oh & Tsolmon Bayarsaikhan & Tae-Hyoung Tommy Gim, 2023. "A modeling study of the effect of social distancing policies on the early spread of coronavirus disease 2019: a case of South Korea," The Annals of Regional Science, Springer;Western Regional Science Association, vol. 71(1), pages 225-242, August.
    6. Crokidakis, Nuno & Sigaud, Lucas, 2021. "Modeling the evolution of drinking behavior: A Statistical Physics perspective," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 570(C).
    7. Sharma, Natasha & Verma, Atul Kumar & Gupta, Arvind Kumar, 2021. "Spatial network based model forecasting transmission and control of COVID-19," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 581(C).
    8. Boeing, Philipp & Wang, Yihan, 2021. "Decoding China's Covid-19 "virus exceptionalism": Community-based digital contact tracing in Wuhan," ZEW Discussion Papers 21-028, ZEW - Leibniz Centre for European Economic Research.
    9. Asamoah, Joshua Kiddy K. & Owusu, Mark A. & Jin, Zhen & Oduro, F. T. & Abidemi, Afeez & Gyasi, Esther Opoku, 2020. "Global stability and cost-effectiveness analysis of COVID-19 considering the impact of the environment: using data from Ghana," Chaos, Solitons & Fractals, Elsevier, vol. 140(C).
    10. Cooper, Ian & Mondal, Argha & Antonopoulos, Chris G., 2020. "Dynamic tracking with model-based forecasting for the spread of the COVID-19 pandemic," Chaos, Solitons & Fractals, Elsevier, vol. 139(C).
    11. Klapcsik, Kálmán & Hegedűs, Ferenc, 2017. "The effect of high viscosity on the evolution of the bifurcation set of a periodically excited gas bubble," Chaos, Solitons & Fractals, Elsevier, vol. 104(C), pages 198-208.
    12. Lifeng Zhang & Roy E. Welsch & Zhi Cao, 2022. "The Transmission, Infection Prevention, and Control during the COVID-19 Pandemic in China: A Retrospective Study," IJERPH, MDPI, vol. 19(5), pages 1-15, March.
    13. Bimal Kumar Mishra, 2022. "Stochastic models on the transmission of novel COVID-19," International Journal of System Assurance Engineering and Management, Springer;The Society for Reliability, Engineering Quality and Operations Management (SREQOM),India, and Division of Operation and Maintenance, Lulea University of Technology, Sweden, vol. 13(2), pages 599-603, April.
    14. Ghosh, Mousam & Ghosh, Swarnankur & Ghosh, Suman & Panda, Goutam Kumar & Saha, Pradip Kumar, 2021. "Dynamic model of infected population due to spreading of pandemic COVID-19 considering both intra and inter zone mobilization factors with rate of detection," Chaos, Solitons & Fractals, Elsevier, vol. 142(C).
    15. Keqiang Dong & Liao Guo, 2021. "Research on the Spatial Correlation and Spatial Lag of COVID-19 Infection Based on Spatial Analysis," Sustainability, MDPI, vol. 13(21), pages 1-16, October.
    16. Tu, Yunbo & Meng, Xinzhu & Alzahrani, Abdullah Khames & Zhang, Tonghua, 2023. "Multi-objective optimization and nonlinear dynamics for sub-healthy COVID-19 epidemic model subject to self-diffusion and cross-diffusion," Chaos, Solitons & Fractals, Elsevier, vol. 175(P1).
    17. Chu, Yu-Ming & Bekiros, Stelios & Zambrano-Serrano, Ernesto & Orozco-López, Onofre & Lahmiri, Salim & Jahanshahi, Hadi & Aly, Ayman A., 2021. "Artificial macro-economics: A chaotic discrete-time fractional-order laboratory model," Chaos, Solitons & Fractals, Elsevier, vol. 145(C).
    18. Han, Ning & Zhang, Hanfang & Lu, Peipei & Liu, Zixuan, 2024. "Resonance response and chaotic analysis for an irrational pendulum system," Chaos, Solitons & Fractals, Elsevier, vol. 182(C).
    19. William E. Allen & Han Altae-Tran & James Briggs & Xin Jin & Glen McGee & Andy Shi & Rumya Raghavan & Mireille Kamariza & Nicole Nova & Albert Pereta & Chris Danford & Amine Kamel & Patrik Gothe & Evr, 2020. "Population-scale longitudinal mapping of COVID-19 symptoms, behaviour and testing," Nature Human Behaviour, Nature, vol. 4(9), pages 972-982, September.
    20. Charu Arora & Poras Khetarpal & Saket Gupta & Nuzhat Fatema & Hasmat Malik & Asyraf Afthanorhan, 2023. "Mathematical Modelling to Predict the Effect of Vaccination on Delay and Rise of COVID-19 Cases Management," Mathematics, MDPI, vol. 11(4), pages 1-15, February.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:chsofr:v:142:y:2021:i:c:s0960077920308249. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Thayer, Thomas R. (email available below). General contact details of provider: https://www.journals.elsevier.com/chaos-solitons-and-fractals .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.