IDEAS home Printed from https://ideas.repec.org/a/eee/chsofr/v137y2020ics0960077920303180.html
   My bibliography  Save this article

Lessons from being challenged by COVID-19

Author

Listed:
  • Tagliazucchi, E.
  • Balenzuela, P.
  • Travizano, M.
  • Mindlin, G.B.
  • Mininni, P.D.

Abstract

We present results of different approaches to model the evolution of the COVID-19 epidemic in Argentina, with a special focus on the megacity conformed by the city of Buenos Aires and its metropolitan area, including a total of 41 districts with over 13 million inhabitants. We first highlight the relevance of interpreting the early stage of the epidemic in light of incoming infectious travelers from abroad. Next, we critically evaluate certain proposed solutions to contain the epidemic based on instantaneous modifications of the reproductive number. Finally, we build increasingly complex and realistic models, ranging from simple homogeneous models used to estimate local reproduction numbers, to fully coupled inhomogeneous (deterministic or stochastic) models incorporating mobility estimates from cell phone location data. The models are capable of producing forecasts highly consistent with the official number of cases with minimal parameter fitting and fine-tuning. We discuss the strengths and limitations of the proposed models, focusing on the validity of different necessary first approximations, and caution future modeling efforts to exercise great care in the interpretation of long-term forecasts, and in the adoption of non-pharmaceutical interventions backed by numerical simulations.

Suggested Citation

  • Tagliazucchi, E. & Balenzuela, P. & Travizano, M. & Mindlin, G.B. & Mininni, P.D., 2020. "Lessons from being challenged by COVID-19," Chaos, Solitons & Fractals, Elsevier, vol. 137(C).
  • Handle: RePEc:eee:chsofr:v:137:y:2020:i:c:s0960077920303180
    DOI: 10.1016/j.chaos.2020.109923
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S0960077920303180
    Download Restriction: Full text for ScienceDirect subscribers only

    File URL: https://libkey.io/10.1016/j.chaos.2020.109923?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Phenyo E. Lekone & Bärbel F. Finkenstädt, 2006. "Statistical Inference in a Stochastic Epidemic SEIR Model with Control Intervention: Ebola as a Case Study," Biometrics, The International Biometric Society, vol. 62(4), pages 1170-1177, December.
    2. Neil M. Ferguson & Derek A. T. Cummings & Christophe Fraser & James C. Cajka & Philip C. Cooley & Donald S. Burke, 2006. "Strategies for mitigating an influenza pandemic," Nature, Nature, vol. 442(7101), pages 448-452, July.
    3. Jayson S. Jia & Xin Lu & Yun Yuan & Ge Xu & Jianmin Jia & Nicholas A. Christakis, 2020. "Population flow drives spatio-temporal distribution of COVID-19 in China," Nature, Nature, vol. 582(7812), pages 389-394, June.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Christos A. Kontovas & Krishna Sooprayen, 2020. "Maritime Cargo Prioritisation during a Prolonged Pandemic Lockdown Using an Integrated TOPSIS-Knapsack Technique: A Case Study on Small Island Developing States—The Rodrigues Island," Sustainability, MDPI, vol. 12(19), pages 1-20, September.
    2. Amaral, Marco A. & Oliveira, Marcelo M. de & Javarone, Marco A., 2021. "An epidemiological model with voluntary quarantine strategies governed by evolutionary game dynamics," Chaos, Solitons & Fractals, Elsevier, vol. 143(C).
    3. Bimal Kumar Mishra, 2022. "Stochastic models on the transmission of novel COVID-19," International Journal of System Assurance Engineering and Management, Springer;The Society for Reliability, Engineering Quality and Operations Management (SREQOM),India, and Division of Operation and Maintenance, Lulea University of Technology, Sweden, vol. 13(2), pages 599-603, April.
    4. de Souza, Silvio L.T. & Batista, Antonio M. & Caldas, Iberê L. & Iarosz, Kelly C. & Szezech Jr, José D., 2021. "Dynamics of epidemics: Impact of easing restrictions and control of infection spread," Chaos, Solitons & Fractals, Elsevier, vol. 142(C).
    5. Kaxiras, Efthimios & Neofotistos, Georgios & Angelaki, Eleni, 2020. "The first 100 days: Modeling the evolution of the COVID-19 pandemic," Chaos, Solitons & Fractals, Elsevier, vol. 138(C).
    6. Ghosh, Mousam & Ghosh, Swarnankur & Ghosh, Suman & Panda, Goutam Kumar & Saha, Pradip Kumar, 2021. "Dynamic model of infected population due to spreading of pandemic COVID-19 considering both intra and inter zone mobilization factors with rate of detection," Chaos, Solitons & Fractals, Elsevier, vol. 142(C).
    7. Angeli, Mattia & Neofotistos, Georgios & Mattheakis, Marios & Kaxiras, Efthimios, 2022. "Modeling the effect of the vaccination campaign on the COVID-19 pandemic," Chaos, Solitons & Fractals, Elsevier, vol. 154(C).
    8. Mishra, Bimal Kumar & Keshri, Ajit Kumar & Saini, Dinesh Kumar & Ayesha, Syeda & Mishra, Binay Kumar & Rao, Yerra Shankar, 2021. "Mathematical model, forecast and analysis on the spread of COVID-19," Chaos, Solitons & Fractals, Elsevier, vol. 147(C).

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Fang, Hanming & Wang, Long & Yang, Yang, 2020. "Human mobility restrictions and the spread of the Novel Coronavirus (2019-nCoV) in China," Journal of Public Economics, Elsevier, vol. 191(C).
    2. Lu Tang & Yiwang Zhou & Lili Wang & Soumik Purkayastha & Leyao Zhang & Jie He & Fei Wang & Peter X.‐K. Song, 2020. "A Review of Multi‐Compartment Infectious Disease Models," International Statistical Review, International Statistical Institute, vol. 88(2), pages 462-513, August.
    3. Bart Roelofs & Dimitris Ballas & Hinke Haisma & Arjen Edzes, 2022. "Spatial mobility patterns and COVID‐19 incidence: A regional analysis of the second wave in the Netherlands," Regional Science Policy & Practice, Wiley Blackwell, vol. 14(S1), pages 21-40, November.
    4. Jeremy Hadidjojo & Siew Ann Cheong, 2011. "Equal Graph Partitioning on Estimated Infection Network as an Effective Epidemic Mitigation Measure," PLOS ONE, Public Library of Science, vol. 6(7), pages 1-10, July.
    5. Kuchler, Theresa & Russel, Dominic & Stroebel, Johannes, 2022. "JUE Insight: The geographic spread of COVID-19 correlates with the structure of social networks as measured by Facebook," Journal of Urban Economics, Elsevier, vol. 127(C).
    6. Wang, Peipei & Liu, Haiyan & Zheng, Xinqi & Ma, Ruifang, 2023. "A new method for spatio-temporal transmission prediction of COVID-19," Chaos, Solitons & Fractals, Elsevier, vol. 167(C).
    7. Catalina Amuedo-Dorantes & Neeraj Kaushal & Ashley N. Muchow, 2021. "Timing of social distancing policies and COVID-19 mortality: county-level evidence from the U.S," Journal of Population Economics, Springer;European Society for Population Economics, vol. 34(4), pages 1445-1472, October.
    8. Lei Che & Jiangang Xu & Hong Chen & Dongqi Sun & Bao Wang & Yunuo Zheng & Xuedi Yang & Zhongren Peng, 2022. "Evaluation of the Spatial Effect of Network Resilience in the Yangtze River Delta: An Integrated Framework for Regional Collaboration and Governance under Disruption," Land, MDPI, vol. 11(8), pages 1-20, August.
    9. Moshe B Hoshen & Anthony H Burton & Themis J V Bowcock, 2007. "Simulating disease transmission dynamics at a multi-scale level," International Journal of Microsimulation, International Microsimulation Association, vol. 1(1), pages 26-34.
    10. Kamara, Abdul A. & Wang, Xiangjun & Mouanguissa, Lagès Nadège, 2020. "Analytical solution for post-death transmission model of Ebola epidemics," Applied Mathematics and Computation, Elsevier, vol. 367(C).
    11. Susan M. Rogers & James Rineer & Matthew D. Scruggs & William D. Wheaton & Phillip C. Cooley & Douglas J. Roberts & Diane K. Wagener, 2014. "A Geospatial Dynamic Microsimulation Model for Household Population Projections," International Journal of Microsimulation, International Microsimulation Association, vol. 7(2), pages 119-146.
    12. Antonio Diez de los Rios, 2022. "A macroeconomic model of an epidemic with silent transmission and endogenous self‐isolation," Canadian Journal of Economics/Revue canadienne d'économique, John Wiley & Sons, vol. 55(S1), pages 581-625, February.
    13. Talal Daghriri & Michael Proctor & Sarah Matthews, 2022. "Evolution of Select Epidemiological Modeling and the Rise of Population Sentiment Analysis: A Literature Review and COVID-19 Sentiment Illustration," IJERPH, MDPI, vol. 19(6), pages 1-20, March.
    14. Andrew J. Curtis & Jayakrishnan Ajayakumar & Jacqueline Curtis & Sam Brown, 2022. "Spatial Syndromic Surveillance and COVID-19 in the U.S.: Local Cluster Mapping for Pandemic Preparedness," IJERPH, MDPI, vol. 19(15), pages 1-15, July.
    15. Liu, Li-Jing & Yao, Yun-Fei & Liang, Qiao-Mei & Qian, Xiang-Yan & Xu, Chun-Lei & Wei, Si-Yi & Creutzig, Felix & Wei, Yi-Ming, 2021. "Combining economic recovery with climate change mitigation: A global evaluation of financial instruments," Economic Analysis and Policy, Elsevier, vol. 72(C), pages 438-453.
    16. Elisa Giannone & Nuno Paixao & Xinle Pang, 2021. "The Geography of Pandemic Containment," Staff Working Papers 21-26, Bank of Canada.
    17. Mugnaine, Michele & Gabrick, Enrique C. & Protachevicz, Paulo R. & Iarosz, Kelly C. & de Souza, Silvio L.T. & Almeida, Alexandre C.L. & Batista, Antonio M. & Caldas, Iberê L. & Szezech Jr, José D. & V, 2022. "Control attenuation and temporary immunity in a cellular automata SEIR epidemic model," Chaos, Solitons & Fractals, Elsevier, vol. 155(C).
    18. Wiriya Mahikul & Somkid Kripattanapong & Piya Hanvoravongchai & Aronrag Meeyai & Sopon Iamsirithaworn & Prasert Auewarakul & Wirichada Pan-ngum, 2020. "Contact Mixing Patterns and Population Movement among Migrant Workers in an Urban Setting in Thailand," IJERPH, MDPI, vol. 17(7), pages 1-11, March.
    19. Andrew G. Atkeson & Karen A. Kopecky & Tao Zha, 2024. "Four Stylized Facts About Covid‐19," International Economic Review, Department of Economics, University of Pennsylvania and Osaka University Institute of Social and Economic Research Association, vol. 65(1), pages 3-42, February.
    20. Christos Nicolaides & Demetris Avraam & Luis Cueto‐Felgueroso & Marta C. González & Ruben Juanes, 2020. "Hand‐Hygiene Mitigation Strategies Against Global Disease Spreading through the Air Transportation Network," Risk Analysis, John Wiley & Sons, vol. 40(4), pages 723-740, April.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:chsofr:v:137:y:2020:i:c:s0960077920303180. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Thayer, Thomas R. (email available below). General contact details of provider: https://www.journals.elsevier.com/chaos-solitons-and-fractals .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.