IDEAS home Printed from https://ideas.repec.org/a/eee/chsofr/v44y2011i11p982-989.html
   My bibliography  Save this article

Replicate periodic windows in the parameter space of driven oscillators

Author

Listed:
  • Medeiros, E.S.
  • de Souza, S.L.T.
  • Medrano-T, R.O.
  • Caldas, I.L.

Abstract

In the bi-dimensional parameter space of driven oscillators, shrimp-shaped periodic windows are immersed in chaotic regions. For two of these oscillators, namely, Duffing and Josephson junction, we show that a weak harmonic perturbation replicates these periodic windows giving rise to parameter regions correspondent to periodic orbits. The new windows are composed of parameters whose periodic orbits have the same periodicity and pattern of stable and unstable periodic orbits already existent for the unperturbed oscillator. Moreover, these unstable periodic orbits are embedded in chaotic attractors in phase space regions where the new stable orbits are identified. Thus, the observed periodic window replication is an effective oscillator control process, once chaotic orbits are replaced by regular ones.

Suggested Citation

  • Medeiros, E.S. & de Souza, S.L.T. & Medrano-T, R.O. & Caldas, I.L., 2011. "Replicate periodic windows in the parameter space of driven oscillators," Chaos, Solitons & Fractals, Elsevier, vol. 44(11), pages 982-989.
  • Handle: RePEc:eee:chsofr:v:44:y:2011:i:11:p:982-989
    DOI: 10.1016/j.chaos.2011.08.002
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S0960077911001573
    Download Restriction: Full text for ScienceDirect subscribers only

    File URL: https://libkey.io/10.1016/j.chaos.2011.08.002?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Gallas, Jason A.C., 1994. "Dissecting shrimps: results for some one-dimensional physical models," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 202(1), pages 196-223.
    2. de Souza, S.L.T. & Wiercigroch, M. & Caldas, I.L. & Balthazar, J.M., 2008. "Suppressing grazing chaos in impacting system by structural nonlinearity," Chaos, Solitons & Fractals, Elsevier, vol. 38(3), pages 864-869.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Trobia, José & de Souza, Silvio L.T. & dos Santos, Margarete A. & Szezech, José D. & Batista, Antonio M. & Borges, Rafael R. & Pereira, Leandro da S. & Protachevicz, Paulo R. & Caldas, Iberê L. & Iaro, 2022. "On the dynamical behaviour of a glucose-insulin model," Chaos, Solitons & Fractals, Elsevier, vol. 155(C).
    2. Varga, Roxána & Klapcsik, Kálmán & Hegedűs, Ferenc, 2020. "Route to shrimps: Dissipation driven formation of shrimp-shaped domains," Chaos, Solitons & Fractals, Elsevier, vol. 130(C).
    3. da Costa, Diogo Ricardo & Rocha, Julia G.S. & de Paiva, Luam S. & Medrano-T, Rene O., 2021. "Logistic-like and Gauss coupled maps: The born of period-adding cascades," Chaos, Solitons & Fractals, Elsevier, vol. 144(C).
    4. da Costa, Diogo Ricardo & Hansen, Matheus & Batista, Antonio Marcos, 2019. "Parametric perturbation in a model that describes the neuronal membrane potential," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 515(C), pages 519-525.
    5. de Souza, Silvio L.T. & Batista, Antonio M. & Caldas, Iberê L. & Iarosz, Kelly C. & Szezech Jr, José D., 2021. "Dynamics of epidemics: Impact of easing restrictions and control of infection spread," Chaos, Solitons & Fractals, Elsevier, vol. 142(C).
    6. Klapcsik, Kálmán & Hegedűs, Ferenc, 2017. "The effect of high viscosity on the evolution of the bifurcation set of a periodically excited gas bubble," Chaos, Solitons & Fractals, Elsevier, vol. 104(C), pages 198-208.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Oliveira, Diego F.M. & Leonel, Edson D., 2014. "Statistical and dynamical properties of a dissipative kicked rotator," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 413(C), pages 498-514.
    2. Rao, Xiao-Bo & Zhao, Xu-Ping & Chu, Yan-Dong & Zhang, Jian-Gang & Gao, Jian-She, 2020. "The analysis of mode-locking topology in an SIR epidemic dynamics model with impulsive vaccination control: Infinite cascade of Stern-Brocot sum trees," Chaos, Solitons & Fractals, Elsevier, vol. 139(C).
    3. Wang, Liang & Xu, Wei & Li, Gaojie & Li, Dongxi, 2009. "Response of a stochastic Duffing–Van der Pol elastic impact oscillator," Chaos, Solitons & Fractals, Elsevier, vol. 41(4), pages 2075-2080.
    4. dos Santos, Vagner & Szezech Jr., José D. & Baptista, Murilo S. & Batista, Antonio M. & Caldas, Iberê L., 2016. "Unstable dimension variability structure in the parameter space of coupled Hénon maps," Applied Mathematics and Computation, Elsevier, vol. 286(C), pages 23-28.
    5. Liu, Li & Xu, Wei & Yue, Xiaole & Qiao, Yan, 2020. "Reliability of elastic impact system with Coulomb friction excited by Gaussian white noise," Chaos, Solitons & Fractals, Elsevier, vol. 131(C).
    6. Gallas, Jason A.C., 1995. "Units: Remarkable points in dynamical systems," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 222(1), pages 125-151.
    7. de Souza, S.L.T. & Batista, A.M. & Baptista, M.S. & Caldas, I.L. & Balthazar, J.M., 2017. "Characterization in bi-parameter space of a non-ideal oscillator," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 466(C), pages 224-231.

    More about this item

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:chsofr:v:44:y:2011:i:11:p:982-989. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Thayer, Thomas R. (email available below). General contact details of provider: https://www.journals.elsevier.com/chaos-solitons-and-fractals .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.