IDEAS home Printed from https://ideas.repec.org/a/gam/jmathe/v11y2023i4p821-d1059238.html
   My bibliography  Save this article

Mathematical Modelling to Predict the Effect of Vaccination on Delay and Rise of COVID-19 Cases Management

Author

Listed:
  • Charu Arora

    (Department of Applied Sciences, Bharati Vidyapeeth’s College of Engineering, Delhi 110063, India
    These authors contributed equally to this work.)

  • Poras Khetarpal

    (Department of Information Technology, Bharati Vidyapeeth’s College of Engineering, Delhi 110063, India
    These authors contributed equally to this work.)

  • Saket Gupta

    (Department of Instrumentation and Control Engineering, Bharati Vidyapeeth’s College of Engineering, Delhi 110063, India
    These authors contributed equally to this work.)

  • Nuzhat Fatema

    (Faculty of Business and Management, Universiti Sultan Zainal Abidin (UniSZA), Gong Badak, Kuala Terengganu 21300, Terengganu, Malaysia
    Intelligent Prognostic Private Limited, Delhi 110093, India
    These authors contributed equally to this work.)

  • Hasmat Malik

    (Department of Electrical Power Engineering, Faculty of Electrical Engineering, University Technology Malaysia (UTM), Johor Bahru 81310, Johor, Malaysia
    These authors contributed equally to this work.)

  • Asyraf Afthanorhan

    (Faculty of Business and Management, Universiti Sultan Zainal Abidin (UniSZA), Gong Badak, Kuala Terengganu 21300, Terengganu, Malaysia
    These authors contributed equally to this work.)

Abstract

In this paper, a mathematical model based on COVID-19 is developed to study and manage disease outbreaks. The effect of vaccination with regard to its efficacy and percentage of population vaccinated in a closed population is investigated. To study virus transmission, the system employs six nonlinear ordinary differential equations with susceptible–exposed–asymptomatic–infected–vaccinated–recovered populations and the basic reproduction number are calculated. The proposed model describes for highly infectious diseases (such as COVID-19) in a closed containment area with no migration. This paper considers that the percentage of vaccinated population has a significant impact on the number of COVID-19 positive cases during the pandemic wave and examines how the pandemic rise time is delayed. Numerical simulation to investigate disease outbreaks when the community is undergoing vaccination is performed, taking the efficacy rate of the vaccine into account. Sensitivity Index values are calculated for the reproduction number and their relations with few other parameters are depicted.

Suggested Citation

  • Charu Arora & Poras Khetarpal & Saket Gupta & Nuzhat Fatema & Hasmat Malik & Asyraf Afthanorhan, 2023. "Mathematical Modelling to Predict the Effect of Vaccination on Delay and Rise of COVID-19 Cases Management," Mathematics, MDPI, vol. 11(4), pages 1-15, February.
  • Handle: RePEc:gam:jmathe:v:11:y:2023:i:4:p:821-:d:1059238
    as

    Download full text from publisher

    File URL: https://www.mdpi.com/2227-7390/11/4/821/pdf
    Download Restriction: no

    File URL: https://www.mdpi.com/2227-7390/11/4/821/
    Download Restriction: no
    ---><---

    References listed on IDEAS

    as
    1. Yousefpour, Amin & Jahanshahi, Hadi & Bekiros, Stelios, 2020. "Optimal policies for control of the novel coronavirus disease (COVID-19) outbreak," Chaos, Solitons & Fractals, Elsevier, vol. 136(C).
    2. Singh, Sarbjit & Parmar, Kulwinder Singh & Kumar, Jatinder & Makkhan, Sidhu Jitendra Singh, 2020. "Development of new hybrid model of discrete wavelet decomposition and autoregressive integrated moving average (ARIMA) models in application to one month forecast the casualties cases of COVID-19," Chaos, Solitons & Fractals, Elsevier, vol. 135(C).
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Méndez-Gordillo, Alma Rosa & Cadenas, Erasmo, 2021. "Wind speed forecasting by the extraction of the multifractal patterns of time series through the multiplicative cascade technique," Chaos, Solitons & Fractals, Elsevier, vol. 143(C).
    2. Asamoah, Joshua Kiddy K. & Owusu, Mark A. & Jin, Zhen & Oduro, F. T. & Abidemi, Afeez & Gyasi, Esther Opoku, 2020. "Global stability and cost-effectiveness analysis of COVID-19 considering the impact of the environment: using data from Ghana," Chaos, Solitons & Fractals, Elsevier, vol. 140(C).
    3. Arielle Kaim & Tuvia Gering & Amiram Moshaiov & Bruria Adini, 2021. "Deciphering the COVID-19 Health Economic Dilemma (HED): A Scoping Review," IJERPH, MDPI, vol. 18(18), pages 1-13, September.
    4. Memon, Zaibunnisa & Qureshi, Sania & Memon, Bisharat Rasool, 2021. "Assessing the role of quarantine and isolation as control strategies for COVID-19 outbreak: A case study," Chaos, Solitons & Fractals, Elsevier, vol. 144(C).
    5. Jahanshahi, Hadi & Munoz-Pacheco, Jesus M. & Bekiros, Stelios & Alotaibi, Naif D., 2021. "A fractional-order SIRD model with time-dependent memory indexes for encompassing the multi-fractional characteristics of the COVID-19," Chaos, Solitons & Fractals, Elsevier, vol. 143(C).
    6. Tu, Yunbo & Meng, Xinzhu & Alzahrani, Abdullah Khames & Zhang, Tonghua, 2023. "Multi-objective optimization and nonlinear dynamics for sub-healthy COVID-19 epidemic model subject to self-diffusion and cross-diffusion," Chaos, Solitons & Fractals, Elsevier, vol. 175(P1).
    7. Chu, Yu-Ming & Bekiros, Stelios & Zambrano-Serrano, Ernesto & Orozco-López, Onofre & Lahmiri, Salim & Jahanshahi, Hadi & Aly, Ayman A., 2021. "Artificial macro-economics: A chaotic discrete-time fractional-order laboratory model," Chaos, Solitons & Fractals, Elsevier, vol. 145(C).
    8. Gaetano Perone, 2022. "Comparison of ARIMA, ETS, NNAR, TBATS and hybrid models to forecast the second wave of COVID-19 hospitalizations in Italy," The European Journal of Health Economics, Springer;Deutsche Gesellschaft für Gesundheitsökonomie (DGGÖ), vol. 23(6), pages 917-940, August.
    9. Yuan, Yiran & Li, Ning, 2022. "Optimal control and cost-effectiveness analysis for a COVID-19 model with individual protection awareness," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 603(C).
    10. Singh, Sarbjit & Parmar, Kulwinder Singh & Makkhan, Sidhu Jitendra Singh & Kaur, Jatinder & Peshoria, Shruti & Kumar, Jatinder, 2020. "Study of ARIMA and least square support vector machine (LS-SVM) models for the prediction of SARS-CoV-2 confirmed cases in the most affected countries," Chaos, Solitons & Fractals, Elsevier, vol. 139(C).
    11. Batistela, Cristiane M. & Correa, Diego P.F. & Bueno, Átila M & Piqueira, José Roberto C., 2021. "SIRSi compartmental model for COVID-19 pandemic with immunity loss," Chaos, Solitons & Fractals, Elsevier, vol. 142(C).
    12. Okuonghae, D. & Omame, A., 2020. "Analysis of a mathematical model for COVID-19 population dynamics in Lagos, Nigeria," Chaos, Solitons & Fractals, Elsevier, vol. 139(C).
    13. Njud S. Alharbi & Hadi Jahanshahi & Qijia Yao & Stelios Bekiros & Irene Moroz, 2023. "Enhanced Classification of Heartbeat Electrocardiogram Signals Using a Long Short-Term Memory–Convolutional Neural Network Ensemble: Paving the Way for Preventive Healthcare," Mathematics, MDPI, vol. 11(18), pages 1-17, September.
    14. Jelena Musulin & Sandi Baressi Šegota & Daniel Štifanić & Ivan Lorencin & Nikola Anđelić & Tijana Šušteršič & Anđela Blagojević & Nenad Filipović & Tomislav Ćabov & Elitza Markova-Car, 2021. "Application of Artificial Intelligence-Based Regression Methods in the Problem of COVID-19 Spread Prediction: A Systematic Review," IJERPH, MDPI, vol. 18(8), pages 1-39, April.
    15. Dinesh K. Sharma & H. S. Hota & Kate Brown & Richa Handa, 2022. "Integration of genetic algorithm with artificial neural network for stock market forecasting," International Journal of System Assurance Engineering and Management, Springer;The Society for Reliability, Engineering Quality and Operations Management (SREQOM),India, and Division of Operation and Maintenance, Lulea University of Technology, Sweden, vol. 13(2), pages 828-841, June.
    16. Çaparoğlu, Ömer Faruk & Ok, Yeşim & Tutam, Mahmut, 2021. "To restrict or not to restrict? Use of artificial neural network to evaluate the effectiveness of mitigation policies: A case study of Turkey," Chaos, Solitons & Fractals, Elsevier, vol. 151(C).
    17. Claudio Barbiellini Amidei & Ugo Fedeli & Nicola Gennaro & Laura Cestari & Elena Schievano & Manuel Zorzi & Paolo Girardi & Veronica Casotto, 2023. "Estimating Overall and Cause-Specific Excess Mortality during the COVID-19 Pandemic: Methodological Approaches Compared," IJERPH, MDPI, vol. 20(11), pages 1-13, May.
    18. Perone, G., 2020. "Comparison of ARIMA, ETS, NNAR and hybrid models to forecast the second wave of COVID-19 hospitalizations in Italy," Health, Econometrics and Data Group (HEDG) Working Papers 20/18, HEDG, c/o Department of Economics, University of York.
    19. Nathan Zavanelli, 2023. "Wavelet Analysis for Time Series Financial Signals via Element Analysis," Papers 2301.13255, arXiv.org.
    20. Sergio Contreras-Espinoza & Francisco Novoa-Muñoz & Szabolcs Blazsek & Pedro Vidal & Christian Caamaño-Carrillo, 2022. "COVID-19 Active Case Forecasts in Latin American Countries Using Score-Driven Models," Mathematics, MDPI, vol. 11(1), pages 1-17, December.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:gam:jmathe:v:11:y:2023:i:4:p:821-:d:1059238. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: MDPI Indexing Manager (email available below). General contact details of provider: https://www.mdpi.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.