Investigating the dynamics of COVID-19 pandemic in India under lockdown
Author
Abstract
Suggested Citation
DOI: 10.1016/j.chaos.2020.109988
Download full text from publisher
As the access to this document is restricted, you may want to search for a different version of it.
Citations
Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
Cited by:
- Avila-Ponce de León, Ugo & Pérez, Ángel G.C. & Avila-Vales, Eric, 2020. "An SEIARD epidemic model for COVID-19 in Mexico: Mathematical analysis and state-level forecast," Chaos, Solitons & Fractals, Elsevier, vol. 140(C).
- Cooper, Ian & Mondal, Argha & Antonopoulos, Chris G., 2020. "Dynamic tracking with model-based forecasting for the spread of the COVID-19 pandemic," Chaos, Solitons & Fractals, Elsevier, vol. 139(C).
- Aguilar-Canto, Fernando Javier & de León, Ugo Avila-Ponce & Avila-Vales, Eric, 2022. "Sensitivity theorems of a model of multiple imperfect vaccines for COVID-19," Chaos, Solitons & Fractals, Elsevier, vol. 156(C).
- de Souza, Silvio L.T. & Batista, Antonio M. & Caldas, Iberê L. & Iarosz, Kelly C. & Szezech Jr, José D., 2021. "Dynamics of epidemics: Impact of easing restrictions and control of infection spread," Chaos, Solitons & Fractals, Elsevier, vol. 142(C).
- Sharma, Natasha & Verma, Atul Kumar & Gupta, Arvind Kumar, 2021. "Spatial network based model forecasting transmission and control of COVID-19," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 581(C).
- S. Chakraborty, 2023. "Monitoring COVID-19 Cases and Vaccination in Indian States and Union Territories Using Unsupervised Machine Learning Algorithm," Annals of Data Science, Springer, vol. 10(4), pages 967-989, August.
- Shaden A. M. Khalifa & Briksam S. Mohamed & Mohamed H. Elashal & Ming Du & Zhiming Guo & Chao Zhao & Syed Ghulam Musharraf & Mohammad H. Boskabady & Haged H. R. El-Seedi & Thomas Efferth & Hesham R. E, 2020. "Comprehensive Overview on Multiple Strategies Fighting COVID-19," IJERPH, MDPI, vol. 17(16), pages 1-13, August.
- Kai Yin & Anirban Mondal & Martial Ndeffo-Mbah & Paromita Banerjee & Qimin Huang & David Gurarie, 2022. "Bayesian Inference for COVID-19 Transmission Dynamics in India Using a Modified SEIR Model," Mathematics, MDPI, vol. 10(21), pages 1-18, October.
Corrections
All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:chsofr:v:138:y:2020:i:c:s0960077920303878. See general information about how to correct material in RePEc.
If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.
We have no bibliographic references for this item. You can help adding them by using this form .
If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.
For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Thayer, Thomas R. (email available below). General contact details of provider: https://www.journals.elsevier.com/chaos-solitons-and-fractals .
Please note that corrections may take a couple of weeks to filter through the various RePEc services.