IDEAS home Printed from https://ideas.repec.org/a/eee/chsofr/v141y2020ics096007792030744x.html
   My bibliography  Save this article

An efficient numerical technique for a biological population model of fractional order

Author

Listed:
  • Attia, Nourhane
  • Akgül, Ali
  • Seba, Djamila
  • Nour, Abdelkader

Abstract

In the present paper, a biological population model of fractional order (FBPM) with one carrying capacity has been examined with the help of reproducing kernel Hilbert space method (RKHSM). This important fractional model arises in many applications in computational biology. It is worth noting that, the considered FBPM is used to provide the changes that is made on the densities of the predator and prey populations by the fractional derivative. The technique employed to construct new numerical solutions for the FBPM which is considered of a system of two nonlinear fractional ordinary differential equations (FODEs). In the proposed investigation, the utilised fractional derivative is the Caputo derivative. The most valuable advantages of the RKHSM is that it is easily and fast implemented method. The solution methodology is based on the use of two important Hilbert spaces, as well as on the construction of a normal basis through the use of Gram-Schmidt orthogonalization process. We illustrate the high competency and capacity of the suggested approach through the convergence analysis. The computational results, which are compared with the homotopy perturbation Sumudu transform method (HPSTM), clearly show: On the one hand, the effect of the fractional derivative in the obtained outcomes, and on the other hand, the great agreement between the mentioned methods, also the superior performance of the RKHSM. The numerical computational are presented in illustrated graphically to show the variations of the predator and prey populations for various fractional order derivatives and with respect to time.

Suggested Citation

  • Attia, Nourhane & Akgül, Ali & Seba, Djamila & Nour, Abdelkader, 2020. "An efficient numerical technique for a biological population model of fractional order," Chaos, Solitons & Fractals, Elsevier, vol. 141(C).
  • Handle: RePEc:eee:chsofr:v:141:y:2020:i:c:s096007792030744x
    DOI: 10.1016/j.chaos.2020.110349
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S096007792030744X
    Download Restriction: Full text for ScienceDirect subscribers only

    File URL: https://libkey.io/10.1016/j.chaos.2020.110349?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Hasan, Shatha & El-Ajou, Ahmad & Hadid, Samir & Al-Smadi, Mohammed & Momani, Shaher, 2020. "Atangana-Baleanu fractional framework of reproducing kernel technique in solving fractional population dynamics system," Chaos, Solitons & Fractals, Elsevier, vol. 133(C).
    2. Sweilam, N.H. & AL-Mekhlafi, S.M. & Alshomrani, A.S. & Baleanu, D., 2020. "Comparative study for optimal control nonlinear variable-order fractional tumor model," Chaos, Solitons & Fractals, Elsevier, vol. 136(C).
    3. Banan Maayah & Samia Bushnaq & Shaher Momani & Omar Abu Arqub, 2014. "Iterative Multistep Reproducing Kernel Hilbert Space Method for Solving Strongly Nonlinear Oscillators," Advances in Mathematical Physics, Hindawi, vol. 2014, pages 1-7, June.
    4. Baleanu, Dumitru & Jajarmi, Amin & Mohammadi, Hakimeh & Rezapour, Shahram, 2020. "A new study on the mathematical modelling of human liver with Caputo–Fabrizio fractional derivative," Chaos, Solitons & Fractals, Elsevier, vol. 134(C).
    5. Ghanbari, Behzad & Cattani, Carlo, 2020. "On fractional predator and prey models with mutualistic predation including non-local and nonsingular kernels," Chaos, Solitons & Fractals, Elsevier, vol. 136(C).
    6. Kumar, Sunil & Kumar, Ranbir & Cattani, Carlo & Samet, Bessem, 2020. "Chaotic behaviour of fractional predator-prey dynamical system," Chaos, Solitons & Fractals, Elsevier, vol. 135(C).
    7. Raw, S.N. & Mishra, P. & Kumar, R. & Thakur, S., 2017. "Complex behavior of prey-predator system exhibiting group defense: A mathematical modeling study," Chaos, Solitons & Fractals, Elsevier, vol. 100(C), pages 74-90.
    8. Srivastava, H.M. & Dubey, V.P. & Kumar, R. & Singh, J. & Kumar, D. & Baleanu, D., 2020. "An efficient computational approach for a fractional-order biological population model with carrying capacity," Chaos, Solitons & Fractals, Elsevier, vol. 138(C).
    9. Danane, Jaouad & Allali, Karam & Hammouch, Zakia, 2020. "Mathematical analysis of a fractional differential model of HBV infection with antibody immune response," Chaos, Solitons & Fractals, Elsevier, vol. 136(C).
    10. Samia Bushnaq & Banan Maayah & Shaher Momani & Ahmed Alsaedi, 2014. "A Reproducing Kernel Hilbert Space Method for Solving Systems of Fractional Integrodifferential Equations," Abstract and Applied Analysis, Hindawi, vol. 2014, pages 1-6, March.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Bentout, Soufiane & Djilali, Salih & Kumar, Sunil, 2021. "Mathematical analysis of the influence of prey escaping from prey herd on three species fractional predator-prey interaction model," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 572(C).
    2. Xu, Changjin & Alhejaili, Weaam & Saifullah, Sayed & Khan, Arshad & Khan, Javed & El-Shorbagy, M.A., 2022. "Analysis of Huanglongbing disease model with a novel fractional piecewise approach," Chaos, Solitons & Fractals, Elsevier, vol. 161(C).

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Ghanbari, Behzad & Günerhan, Hatıra & Srivastava, H.M., 2020. "An application of the Atangana-Baleanu fractional derivative in mathematical biology: A three-species predator-prey model," Chaos, Solitons & Fractals, Elsevier, vol. 138(C).
    2. Babaei, A. & Ahmadi, M. & Jafari, H. & Liya, A., 2021. "A mathematical model to examine the effect of quarantine on the spread of coronavirus," Chaos, Solitons & Fractals, Elsevier, vol. 142(C).
    3. Ali, Hegagi Mohamed & Ameen, Ismail Gad, 2021. "Optimal control strategies of a fractional order model for Zika virus infection involving various transmissions," Chaos, Solitons & Fractals, Elsevier, vol. 146(C).
    4. Hussain, Takasar & Aslam, Adnan & Ozair, Muhammad & Tasneem, Fatima & Gómez-Aguilar, J.F., 2021. "Dynamical aspects of pine wilt disease and control measures," Chaos, Solitons & Fractals, Elsevier, vol. 145(C).
    5. Kritika, & Agarwal, Ritu & Purohit, Sunil Dutt, 2020. "Mathematical model for anomalous subdiffusion using comformable operator," Chaos, Solitons & Fractals, Elsevier, vol. 140(C).
    6. Musrrat Ali & Hemant Gandhi & Amit Tomar & Dimple Singh, 2023. "Similarity Solution for a System of Fractional-Order Coupled Nonlinear Hirota Equations with Conservation Laws," Mathematics, MDPI, vol. 11(11), pages 1-14, May.
    7. Prakash, Amit & Kaur, Hardish, 2021. "Analysis and numerical simulation of fractional Biswas–Milovic model," Mathematics and Computers in Simulation (MATCOM), Elsevier, vol. 181(C), pages 298-315.
    8. Mohamed M. Mousa & Fahad Alsharari, 2021. "A Comparative Numerical Study and Stability Analysis for a Fractional-Order SIR Model of Childhood Diseases," Mathematics, MDPI, vol. 9(22), pages 1-12, November.
    9. Kumar, Sachin & Kharbanda, Harsha, 2019. "Chaotic behavior of predator-prey model with group defense and non-linear harvesting in prey," Chaos, Solitons & Fractals, Elsevier, vol. 119(C), pages 19-28.
    10. Ullah, Ihsan & Ahmad, Saeed & Rahman, Mati ur & Arfan, Muhammad, 2021. "Investigation of fractional order tuberculosis (TB) model via Caputo derivative," Chaos, Solitons & Fractals, Elsevier, vol. 142(C).
    11. Alquran, Marwan & Yousef, Feras & Alquran, Farah & Sulaiman, Tukur A. & Yusuf, Abdullahi, 2021. "Dual-wave solutions for the quadratic–cubic conformable-Caputo time-fractional Klein–Fock–Gordon equation," Mathematics and Computers in Simulation (MATCOM), Elsevier, vol. 185(C), pages 62-76.
    12. Hussain, Ghulam & Khan, Amir & Zahri, Mostafa & Zaman, Gul, 2022. "Ergodic stationary distribution of stochastic epidemic model for HBV with double saturated incidence rates and vaccination," Chaos, Solitons & Fractals, Elsevier, vol. 160(C).
    13. Alam, Mehboob & Zada, Akbar, 2022. "Implementation of q-calculus on q-integro-differential equation involving anti-periodic boundary conditions with three criteria," Chaos, Solitons & Fractals, Elsevier, vol. 154(C).
    14. Liaqat, Muhammad Imran & Akgül, Ali, 2022. "A novel approach for solving linear and nonlinear time-fractional Schrödinger equations," Chaos, Solitons & Fractals, Elsevier, vol. 162(C).
    15. Yahya Almalki & Waqar Afzal, 2023. "Some New Estimates of Hermite–Hadamard Inequalities for Harmonical cr - h -Convex Functions via Generalized Fractional Integral Operator on Set-Valued Mappings," Mathematics, MDPI, vol. 11(19), pages 1-21, September.
    16. Hari Mohan Srivastava & Khaled M. Saad, 2020. "A Comparative Study of the Fractional-Order Clock Chemical Model," Mathematics, MDPI, vol. 8(9), pages 1-14, August.
    17. Hussam Aljarrah & Mohammad Alaroud & Anuar Ishak & Maslina Darus, 2022. "Approximate Solution of Nonlinear Time-Fractional PDEs by Laplace Residual Power Series Method," Mathematics, MDPI, vol. 10(12), pages 1-16, June.
    18. Ghanbari, Behzad, 2021. "On detecting chaos in a prey-predator model with prey’s counter-attack on juvenile predators," Chaos, Solitons & Fractals, Elsevier, vol. 150(C).
    19. Ravi Kanth, A.S.V. & Devi, Sangeeta, 2021. "A practical numerical approach to solve a fractional Lotka–Volterra population model with non-singular and singular kernels," Chaos, Solitons & Fractals, Elsevier, vol. 145(C).
    20. Li, Peiluan & Gao, Rong & Xu, Changjin & Ahmad, Shabir & Li, Ying & Akgül, Ali, 2023. "Bifurcation behavior and PDγ control mechanism of a fractional delayed genetic regulatory model," Chaos, Solitons & Fractals, Elsevier, vol. 168(C).

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:chsofr:v:141:y:2020:i:c:s096007792030744x. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Thayer, Thomas R. (email available below). General contact details of provider: https://www.journals.elsevier.com/chaos-solitons-and-fractals .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.