IDEAS home Printed from https://ideas.repec.org/a/eee/chsofr/v136y2020ics096007792030223x.html
   My bibliography  Save this article

On fractional predator and prey models with mutualistic predation including non-local and nonsingular kernels

Author

Listed:
  • Ghanbari, Behzad
  • Cattani, Carlo

Abstract

In a biological system, discovering the interactions between species is of high importance in the preservation and maintenance of these rare species. In this research work, we have utilized powerful mathematical tools to describe two Lotka–Volterra models with mutualistic predation. The kernel used in the derivative is a non-singular and non-local type that gives us many benefits in practice. Besides, this type of derivative is capable of storing critical system information, which is an essential feature of studying biological models. The equilibrium points of the two dynamical systems are determined. Moreover, the necessary criteria for establishing the stability of points are investigated in terms of the model parameters. These relationships provide significant and applicable results in the maintenance or extinction of systems that are highly valuable in biological and functional aspects. The necessary conditions for the existence and uniqueness of the solutions are provided. To verify the theoretical results, many practical simulations have been performed in various cases. The approximate technique employed is a very efficient and accurate method for solving such biological systems, which can be utilized to solve similar biological problems. Along with approximate numerical solutions, the ”memory effects” on these fractional models are also perused. The results confirm that the use of fractional derivatives is one of the crucial requirements in biological models.

Suggested Citation

  • Ghanbari, Behzad & Cattani, Carlo, 2020. "On fractional predator and prey models with mutualistic predation including non-local and nonsingular kernels," Chaos, Solitons & Fractals, Elsevier, vol. 136(C).
  • Handle: RePEc:eee:chsofr:v:136:y:2020:i:c:s096007792030223x
    DOI: 10.1016/j.chaos.2020.109823
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S096007792030223X
    Download Restriction: Full text for ScienceDirect subscribers only

    File URL: https://libkey.io/10.1016/j.chaos.2020.109823?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Doungmo Goufo, Emile F. & Kumar, Sunil & Mugisha, S.B., 2020. "Similarities in a fifth-order evolution equation with and with no singular kernel," Chaos, Solitons & Fractals, Elsevier, vol. 130(C).
    2. Jajarmi, Amin & Arshad, Sadia & Baleanu, Dumitru, 2019. "A new fractional modelling and control strategy for the outbreak of dengue fever," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 535(C).
    3. Ghanbari, Behzad & Kumar, Sunil & Kumar, Ranbir, 2020. "A study of behaviour for immune and tumor cells in immunogenetic tumour model with non-singular fractional derivative," Chaos, Solitons & Fractals, Elsevier, vol. 133(C).
    4. Djilali, Salih, 2019. "Impact of prey herd shape on the predator-prey interaction," Chaos, Solitons & Fractals, Elsevier, vol. 120(C), pages 139-148.
    5. Ghanbari, Behzad & Gómez-Aguilar, J.F., 2018. "Modeling the dynamics of nutrient–phytoplankton–zooplankton system with variable-order fractional derivatives," Chaos, Solitons & Fractals, Elsevier, vol. 116(C), pages 114-120.
    6. Cressman, Ross & Garay, József, 2009. "A predator–prey refuge system: Evolutionary stability in ecological systems," Theoretical Population Biology, Elsevier, vol. 76(4), pages 248-257.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Ghanbari, Behzad & Günerhan, Hatıra & Srivastava, H.M., 2020. "An application of the Atangana-Baleanu fractional derivative in mathematical biology: A three-species predator-prey model," Chaos, Solitons & Fractals, Elsevier, vol. 138(C).
    2. Attia, Nourhane & Akgül, Ali & Seba, Djamila & Nour, Abdelkader, 2020. "An efficient numerical technique for a biological population model of fractional order," Chaos, Solitons & Fractals, Elsevier, vol. 141(C).

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Baleanu, Dumitru & Jajarmi, Amin & Mohammadi, Hakimeh & Rezapour, Shahram, 2020. "A new study on the mathematical modelling of human liver with Caputo–Fabrizio fractional derivative," Chaos, Solitons & Fractals, Elsevier, vol. 134(C).
    2. Sunil Kumar & Ali Ahmadian & Ranbir Kumar & Devendra Kumar & Jagdev Singh & Dumitru Baleanu & Mehdi Salimi, 2020. "An Efficient Numerical Method for Fractional SIR Epidemic Model of Infectious Disease by Using Bernstein Wavelets," Mathematics, MDPI, vol. 8(4), pages 1-22, April.
    3. Ghanbari, Behzad & Günerhan, Hatıra & Srivastava, H.M., 2020. "An application of the Atangana-Baleanu fractional derivative in mathematical biology: A three-species predator-prey model," Chaos, Solitons & Fractals, Elsevier, vol. 138(C).
    4. De Angelis, Paolo & De Marchis, Roberto & Martire, Antonio Luciano & Oliva, Immacolata, 2020. "A mean-value Approach to solve fractional differential and integral equations," Chaos, Solitons & Fractals, Elsevier, vol. 138(C).
    5. Ghanbari, Behzad & Djilali, Salih, 2020. "Mathematical analysis of a fractional-order predator-prey model with prey social behavior and infection developed in predator population," Chaos, Solitons & Fractals, Elsevier, vol. 138(C).
    6. Khader, M.M. & Inc, Mustafa, 2021. "Numerical technique based on the interpolation with Lagrange polynomials to analyze the fractional variable-order mathematical model of the hepatitis C with different types of virus genome," Chaos, Solitons & Fractals, Elsevier, vol. 152(C).
    7. Fatima, Bibi & Zaman, Gul, 2020. "Co-infection of Middle Eastern respiratory syndrome coronavirus and pulmonary tuberculosis," Chaos, Solitons & Fractals, Elsevier, vol. 140(C).
    8. Hussain, Ghulam & Khan, Amir & Zahri, Mostafa & Zaman, Gul, 2022. "Ergodic stationary distribution of stochastic epidemic model for HBV with double saturated incidence rates and vaccination," Chaos, Solitons & Fractals, Elsevier, vol. 160(C).
    9. Ravichandran, C. & Sowbakiya, V. & Nisar, Kottakkaran Sooppy, 2022. "Study on existence and data dependence results for fractional order differential equations," Chaos, Solitons & Fractals, Elsevier, vol. 160(C).
    10. Djilali, Salih & Ghanbari, Behzad & Bentout, Soufiane & Mezouaghi, Abdelheq, 2020. "Turing-Hopf bifurcation in a diffusive mussel-algae model with time-fractional-order derivative," Chaos, Solitons & Fractals, Elsevier, vol. 138(C).
    11. Bentout, Soufiane & Djilali, Salih & Kumar, Sunil, 2021. "Mathematical analysis of the influence of prey escaping from prey herd on three species fractional predator-prey interaction model," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 572(C).
    12. Eshel, Ilan & Sansone, Emilia & Shaked, Avner, 2011. "On the evolution of group-escape strategies of selfish prey," Theoretical Population Biology, Elsevier, vol. 80(2), pages 150-157.
    13. Songkran Pleumpreedaporn & Chanidaporn Pleumpreedaporn & Jutarat Kongson & Chatthai Thaiprayoon & Jehad Alzabut & Weerawat Sudsutad, 2022. "Dynamical Analysis of Nutrient-Phytoplankton-Zooplankton Model with Viral Disease in Phytoplankton Species under Atangana-Baleanu-Caputo Derivative," Mathematics, MDPI, vol. 10(9), pages 1-33, May.
    14. Gámez, M. & López, I. & Shamandy, A., 2010. "Open- and closed-loop equilibrium control of trophic chains," Ecological Modelling, Elsevier, vol. 221(16), pages 1839-1846.
    15. Zeid, Samaneh Soradi, 2019. "Approximation methods for solving fractional equations," Chaos, Solitons & Fractals, Elsevier, vol. 125(C), pages 171-193.
    16. Zhang, Zhe & Ai, Zhaoyang & Zhang, Jing & Cheng, Fanyong & Liu, Feng & Ding, Can, 2020. "A general stability criterion for multidimensional fractional-order network systems based on whole oscillation principle for small fractional-order operators," Chaos, Solitons & Fractals, Elsevier, vol. 131(C).
    17. Yuanlin Ma & Xingwang Yu, 2022. "Stationary Probability Density Analysis for the Randomly Forced Phytoplankton–Zooplankton Model with Correlated Colored Noises," Mathematics, MDPI, vol. 10(14), pages 1-11, July.
    18. Sekerci, Yadigar & Ozarslan, Ramazan, 2020. "Respiration Effect on Plankton–Oxygen Dynamics in view of non-singular time fractional derivatives," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 553(C).
    19. DAŞBAŞI, Bahatdin, 2020. "Stability analysis of the hiv model through incommensurate fractional-order nonlinear system," Chaos, Solitons & Fractals, Elsevier, vol. 137(C).
    20. Defterli, Ozlem, 2021. "Comparative analysis of fractional order dengue model with temperature effect via singular and non-singular operators," Chaos, Solitons & Fractals, Elsevier, vol. 144(C).

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:chsofr:v:136:y:2020:i:c:s096007792030223x. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Thayer, Thomas R. (email available below). General contact details of provider: https://www.journals.elsevier.com/chaos-solitons-and-fractals .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.